1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
use crate::task::AtomicWaker;
use futures_core::future::Future;
use futures_core::task::{Context, Poll};
use core::fmt;
use core::pin::Pin;
use core::sync::atomic::{AtomicBool, Ordering};
use alloc::sync::Arc;
use pin_project::pin_project;

/// A future which can be remotely short-circuited using an `AbortHandle`.
#[pin_project]
#[derive(Debug, Clone)]
#[must_use = "futures do nothing unless you `.await` or poll them"]
pub struct Abortable<Fut> {
    #[pin]
    future: Fut,
    inner: Arc<AbortInner>,
}

impl<Fut> Abortable<Fut> where Fut: Future {
    /// Creates a new `Abortable` future using an existing `AbortRegistration`.
    /// `AbortRegistration`s can be acquired through `AbortHandle::new`.
    ///
    /// When `abort` is called on the handle tied to `reg` or if `abort` has
    /// already been called, the future will complete immediately without making
    /// any further progress.
    ///
    /// Example:
    ///
    /// ```
    /// # futures::executor::block_on(async {
    /// use futures::future::{Abortable, AbortHandle, Aborted};
    ///
    /// let (abort_handle, abort_registration) = AbortHandle::new_pair();
    /// let future = Abortable::new(async { 2 }, abort_registration);
    /// abort_handle.abort();
    /// assert_eq!(future.await, Err(Aborted));
    /// # });
    /// ```
    pub fn new(future: Fut, reg: AbortRegistration) -> Self {
        Abortable {
            future,
            inner: reg.inner,
        }
    }
}

/// A registration handle for a `Abortable` future.
/// Values of this type can be acquired from `AbortHandle::new` and are used
/// in calls to `Abortable::new`.
#[derive(Debug)]
pub struct AbortRegistration {
    inner: Arc<AbortInner>,
}

/// A handle to a `Abortable` future.
#[derive(Debug, Clone)]
pub struct AbortHandle {
    inner: Arc<AbortInner>,
}

impl AbortHandle {
    /// Creates an (`AbortHandle`, `AbortRegistration`) pair which can be used
    /// to abort a running future.
    ///
    /// This function is usually paired with a call to `Abortable::new`.
    ///
    /// Example:
    ///
    /// ```
    /// # futures::executor::block_on(async {
    /// use futures::future::{Abortable, AbortHandle, Aborted};
    ///
    /// let (abort_handle, abort_registration) = AbortHandle::new_pair();
    /// let future = Abortable::new(async { 2 }, abort_registration);
    /// abort_handle.abort();
    /// assert_eq!(future.await, Err(Aborted));
    /// # });
    /// ```
    pub fn new_pair() -> (Self, AbortRegistration) {
        let inner = Arc::new(AbortInner {
            waker: AtomicWaker::new(),
            cancel: AtomicBool::new(false),
        });

        (
            AbortHandle {
                inner: inner.clone(),
            },
            AbortRegistration {
                inner,
            },
        )
    }
}

// Inner type storing the waker to awaken and a bool indicating that it
// should be cancelled.
#[derive(Debug)]
struct AbortInner {
    waker: AtomicWaker,
    cancel: AtomicBool,
}

/// Creates a new `Abortable` future and a `AbortHandle` which can be used to stop it.
///
/// This function is a convenient (but less flexible) alternative to calling
/// `AbortHandle::new` and `Abortable::new` manually.
///
/// This function is only available when the `std` or `alloc` feature of this
/// library is activated, and it is activated by default.
pub fn abortable<Fut>(future: Fut) -> (Abortable<Fut>, AbortHandle)
    where Fut: Future
{
    let (handle, reg) = AbortHandle::new_pair();
    (
        Abortable::new(future, reg),
        handle,
    )
}

/// Indicator that the `Abortable` future was aborted.
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
pub struct Aborted;

impl fmt::Display for Aborted {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "`Abortable` future has been aborted")
    }
}

#[cfg(feature = "std")]
impl std::error::Error for Aborted {}

impl<Fut> Future for Abortable<Fut> where Fut: Future {
    type Output = Result<Fut::Output, Aborted>;

    fn poll(mut self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        // Check if the future has been aborted
        if self.inner.cancel.load(Ordering::Relaxed) {
            return Poll::Ready(Err(Aborted))
        }

        // attempt to complete the future
        if let Poll::Ready(x) = self.as_mut().project().future.poll(cx) {
            return Poll::Ready(Ok(x))
        }

        // Register to receive a wakeup if the future is aborted in the... future
        self.inner.waker.register(cx.waker());

        // Check to see if the future was aborted between the first check and
        // registration.
        // Checking with `Relaxed` is sufficient because `register` introduces an
        // `AcqRel` barrier.
        if self.inner.cancel.load(Ordering::Relaxed) {
            return Poll::Ready(Err(Aborted))
        }

        Poll::Pending
    }
}

impl AbortHandle {
    /// Abort the `Abortable` future associated with this handle.
    ///
    /// Notifies the Abortable future associated with this handle that it
    /// should abort. Note that if the future is currently being polled on
    /// another thread, it will not immediately stop running. Instead, it will
    /// continue to run until its poll method returns.
    pub fn abort(&self) {
        self.inner.cancel.store(true, Ordering::Relaxed);
        self.inner.waker.wake();
    }
}