#![cfg_attr(not(feature = "std"), no_std)]
mod error;
mod node_header;
mod node_codec;
mod storage_proof;
mod trie_stream;
use sp_std::{boxed::Box, marker::PhantomData, vec::Vec, borrow::Borrow};
use hash_db::{Hasher, Prefix};
use trie_db::proof::{generate_proof, verify_proof};
pub use trie_db::proof::VerifyError;
pub use error::Error;
pub use trie_stream::TrieStream;
pub use node_codec::NodeCodec;
pub use storage_proof::StorageProof;
pub use trie_db::{
Trie, TrieMut, DBValue, Recorder, CError, Query, TrieLayout, TrieConfiguration, nibble_ops, TrieDBIterator,
};
pub use memory_db::KeyFunction;
pub use memory_db::prefixed_key;
pub use hash_db::{HashDB as HashDBT, EMPTY_PREFIX};
#[derive(Default)]
pub struct Layout<H>(sp_std::marker::PhantomData<H>);
impl<H: Hasher> TrieLayout for Layout<H> {
const USE_EXTENSION: bool = false;
const ALLOW_EMPTY: bool = true;
type Hash = H;
type Codec = NodeCodec<Self::Hash>;
}
impl<H: Hasher> TrieConfiguration for Layout<H> {
fn trie_root<I, A, B>(input: I) -> <Self::Hash as Hasher>::Out where
I: IntoIterator<Item = (A, B)>,
A: AsRef<[u8]> + Ord,
B: AsRef<[u8]>,
{
trie_root::trie_root_no_extension::<H, TrieStream, _, _, _>(input)
}
fn trie_root_unhashed<I, A, B>(input: I) -> Vec<u8> where
I: IntoIterator<Item = (A, B)>,
A: AsRef<[u8]> + Ord,
B: AsRef<[u8]>,
{
trie_root::unhashed_trie_no_extension::<H, TrieStream, _, _, _>(input)
}
fn encode_index(input: u32) -> Vec<u8> {
codec::Encode::encode(&codec::Compact(input))
}
}
pub type TrieError<L> = trie_db::TrieError<TrieHash<L>, CError<L>>;
pub trait AsHashDB<H: Hasher>: hash_db::AsHashDB<H, trie_db::DBValue> {}
impl<H: Hasher, T: hash_db::AsHashDB<H, trie_db::DBValue>> AsHashDB<H> for T {}
pub type HashDB<'a, H> = dyn hash_db::HashDB<H, trie_db::DBValue> + 'a;
pub type PrefixedMemoryDB<H> = memory_db::MemoryDB<H, memory_db::PrefixedKey<H>, trie_db::DBValue>;
pub type MemoryDB<H> = memory_db::MemoryDB<H, memory_db::HashKey<H>, trie_db::DBValue>;
pub type GenericMemoryDB<H, KF> = memory_db::MemoryDB<H, KF, trie_db::DBValue>;
pub type TrieDB<'a, L> = trie_db::TrieDB<'a, L>;
pub type TrieDBMut<'a, L> = trie_db::TrieDBMut<'a, L>;
pub type Lookup<'a, L, Q> = trie_db::Lookup<'a, L, Q>;
pub type TrieHash<L> = <<L as TrieLayout>::Hash as Hasher>::Out;
pub mod trie_types {
pub type Layout<H> = super::Layout<H>;
pub type TrieDB<'a, H> = super::TrieDB<'a, Layout<H>>;
pub type TrieDBMut<'a, H> = super::TrieDBMut<'a, Layout<H>>;
pub type Lookup<'a, H, Q> = trie_db::Lookup<'a, Layout<H>, Q>;
pub type TrieError<H> = trie_db::TrieError<H, super::Error>;
}
pub fn generate_trie_proof<'a, L: TrieConfiguration, I, K, DB>(
db: &DB,
root: TrieHash<L>,
keys: I,
) -> Result<Vec<Vec<u8>>, Box<TrieError<L>>> where
I: IntoIterator<Item=&'a K>,
K: 'a + AsRef<[u8]>,
DB: hash_db::HashDBRef<L::Hash, trie_db::DBValue>,
{
let trie = TrieDB::<L>::new(db, &root)?;
generate_proof(&trie, keys)
}
pub fn verify_trie_proof<'a, L: TrieConfiguration, I, K, V>(
root: &TrieHash<L>,
proof: &[Vec<u8>],
items: I,
) -> Result<(), VerifyError<TrieHash<L>, error::Error>> where
I: IntoIterator<Item=&'a (K, Option<V>)>,
K: 'a + AsRef<[u8]>,
V: 'a + AsRef<[u8]>,
{
verify_proof::<Layout<L::Hash>, _, _, _>(root, proof, items)
}
pub fn delta_trie_root<L: TrieConfiguration, I, A, B, DB, V>(
db: &mut DB,
mut root: TrieHash<L>,
delta: I
) -> Result<TrieHash<L>, Box<TrieError<L>>> where
I: IntoIterator<Item = (A, B)>,
A: Borrow<[u8]>,
B: Borrow<Option<V>>,
V: Borrow<[u8]>,
DB: hash_db::HashDB<L::Hash, trie_db::DBValue>,
{
{
let mut trie = TrieDBMut::<L>::from_existing(&mut *db, &mut root)?;
for (key, change) in delta {
match change.borrow() {
Some(val) => trie.insert(key.borrow(), val.borrow())?,
None => trie.remove(key.borrow())?,
};
}
}
Ok(root)
}
pub fn read_trie_value<L: TrieConfiguration, DB: hash_db::HashDBRef<L::Hash, trie_db::DBValue>>(
db: &DB,
root: &TrieHash<L>,
key: &[u8]
) -> Result<Option<Vec<u8>>, Box<TrieError<L>>> {
Ok(TrieDB::<L>::new(&*db, root)?.get(key).map(|x| x.map(|val| val.to_vec()))?)
}
pub fn read_trie_value_with<
L: TrieConfiguration,
Q: Query<L::Hash, Item=DBValue>,
DB: hash_db::HashDBRef<L::Hash, trie_db::DBValue>
>(
db: &DB,
root: &TrieHash<L>,
key: &[u8],
query: Q
) -> Result<Option<Vec<u8>>, Box<TrieError<L>>> {
Ok(TrieDB::<L>::new(&*db, root)?.get_with(key, query).map(|x| x.map(|val| val.to_vec()))?)
}
pub fn empty_child_trie_root<L: TrieConfiguration>(
) -> <L::Hash as Hasher>::Out {
L::trie_root::<_, Vec<u8>, Vec<u8>>(core::iter::empty())
}
pub fn child_trie_root<L: TrieConfiguration, I, A, B>(
input: I,
) -> <L::Hash as Hasher>::Out
where
I: IntoIterator<Item = (A, B)>,
A: AsRef<[u8]> + Ord,
B: AsRef<[u8]>,
{
L::trie_root(input)
}
pub fn child_delta_trie_root<L: TrieConfiguration, I, A, B, DB, RD, V>(
keyspace: &[u8],
db: &mut DB,
root_data: RD,
delta: I,
) -> Result<<L::Hash as Hasher>::Out, Box<TrieError<L>>>
where
I: IntoIterator<Item = (A, B)>,
A: Borrow<[u8]>,
B: Borrow<Option<V>>,
V: Borrow<[u8]>,
RD: AsRef<[u8]>,
DB: hash_db::HashDB<L::Hash, trie_db::DBValue>
{
let mut root = TrieHash::<L>::default();
root.as_mut().copy_from_slice(root_data.as_ref());
{
let mut db = KeySpacedDBMut::new(&mut *db, keyspace);
let mut trie = TrieDBMut::<L>::from_existing(&mut db, &mut root)?;
for (key, change) in delta {
match change.borrow() {
Some(val) => trie.insert(key.borrow(), val.borrow())?,
None => trie.remove(key.borrow())?,
};
}
}
Ok(root)
}
pub fn for_keys_in_child_trie<L: TrieConfiguration, F: FnMut(&[u8]), DB>(
keyspace: &[u8],
db: &DB,
root_slice: &[u8],
mut f: F
) -> Result<(), Box<TrieError<L>>>
where
DB: hash_db::HashDBRef<L::Hash, trie_db::DBValue>
{
let mut root = TrieHash::<L>::default();
root.as_mut().copy_from_slice(root_slice);
let db = KeySpacedDB::new(&*db, keyspace);
let trie = TrieDB::<L>::new(&db, &root)?;
let iter = trie.iter()?;
for x in iter {
let (key, _) = x?;
f(&key);
}
Ok(())
}
pub fn record_all_keys<L: TrieConfiguration, DB>(
db: &DB,
root: &TrieHash<L>,
recorder: &mut Recorder<TrieHash<L>>
) -> Result<(), Box<TrieError<L>>> where
DB: hash_db::HashDBRef<L::Hash, trie_db::DBValue>
{
let trie = TrieDB::<L>::new(&*db, root)?;
let iter = trie.iter()?;
for x in iter {
let (key, _) = x?;
trie.get_with(&key, &mut *recorder)?;
}
Ok(())
}
pub fn read_child_trie_value<L: TrieConfiguration, DB>(
keyspace: &[u8],
db: &DB,
root_slice: &[u8],
key: &[u8]
) -> Result<Option<Vec<u8>>, Box<TrieError<L>>>
where
DB: hash_db::HashDBRef<L::Hash, trie_db::DBValue>
{
let mut root = TrieHash::<L>::default();
root.as_mut().copy_from_slice(root_slice);
let db = KeySpacedDB::new(&*db, keyspace);
Ok(TrieDB::<L>::new(&db, &root)?.get(key).map(|x| x.map(|val| val.to_vec()))?)
}
pub fn read_child_trie_value_with<L: TrieConfiguration, Q: Query<L::Hash, Item=DBValue>, DB>(
keyspace: &[u8],
db: &DB,
root_slice: &[u8],
key: &[u8],
query: Q
) -> Result<Option<Vec<u8>>, Box<TrieError<L>>>
where
DB: hash_db::HashDBRef<L::Hash, trie_db::DBValue>
{
let mut root = TrieHash::<L>::default();
root.as_mut().copy_from_slice(root_slice);
let db = KeySpacedDB::new(&*db, keyspace);
Ok(TrieDB::<L>::new(&db, &root)?.get_with(key, query).map(|x| x.map(|val| val.to_vec()))?)
}
pub struct KeySpacedDB<'a, DB, H>(&'a DB, &'a [u8], PhantomData<H>);
pub struct KeySpacedDBMut<'a, DB, H>(&'a mut DB, &'a [u8], PhantomData<H>);
fn keyspace_as_prefix_alloc(ks: &[u8], prefix: Prefix) -> (Vec<u8>, Option<u8>) {
let mut result = sp_std::vec![0; ks.len() + prefix.0.len()];
result[..ks.len()].copy_from_slice(ks);
result[ks.len()..].copy_from_slice(prefix.0);
(result, prefix.1)
}
impl<'a, DB, H> KeySpacedDB<'a, DB, H> where
H: Hasher,
{
pub fn new(db: &'a DB, ks: &'a [u8]) -> Self {
KeySpacedDB(db, ks, PhantomData)
}
}
impl<'a, DB, H> KeySpacedDBMut<'a, DB, H> where
H: Hasher,
{
pub fn new(db: &'a mut DB, ks: &'a [u8]) -> Self {
KeySpacedDBMut(db, ks, PhantomData)
}
}
impl<'a, DB, H, T> hash_db::HashDBRef<H, T> for KeySpacedDB<'a, DB, H> where
DB: hash_db::HashDBRef<H, T>,
H: Hasher,
T: From<&'static [u8]>,
{
fn get(&self, key: &H::Out, prefix: Prefix) -> Option<T> {
let derived_prefix = keyspace_as_prefix_alloc(self.1, prefix);
self.0.get(key, (&derived_prefix.0, derived_prefix.1))
}
fn contains(&self, key: &H::Out, prefix: Prefix) -> bool {
let derived_prefix = keyspace_as_prefix_alloc(self.1, prefix);
self.0.contains(key, (&derived_prefix.0, derived_prefix.1))
}
}
impl<'a, DB, H, T> hash_db::HashDB<H, T> for KeySpacedDBMut<'a, DB, H> where
DB: hash_db::HashDB<H, T>,
H: Hasher,
T: Default + PartialEq<T> + for<'b> From<&'b [u8]> + Clone + Send + Sync,
{
fn get(&self, key: &H::Out, prefix: Prefix) -> Option<T> {
let derived_prefix = keyspace_as_prefix_alloc(self.1, prefix);
self.0.get(key, (&derived_prefix.0, derived_prefix.1))
}
fn contains(&self, key: &H::Out, prefix: Prefix) -> bool {
let derived_prefix = keyspace_as_prefix_alloc(self.1, prefix);
self.0.contains(key, (&derived_prefix.0, derived_prefix.1))
}
fn insert(&mut self, prefix: Prefix, value: &[u8]) -> H::Out {
let derived_prefix = keyspace_as_prefix_alloc(self.1, prefix);
self.0.insert((&derived_prefix.0, derived_prefix.1), value)
}
fn emplace(&mut self, key: H::Out, prefix: Prefix, value: T) {
let derived_prefix = keyspace_as_prefix_alloc(self.1, prefix);
self.0.emplace(key, (&derived_prefix.0, derived_prefix.1), value)
}
fn remove(&mut self, key: &H::Out, prefix: Prefix) {
let derived_prefix = keyspace_as_prefix_alloc(self.1, prefix);
self.0.remove(key, (&derived_prefix.0, derived_prefix.1))
}
}
impl<'a, DB, H, T> hash_db::AsHashDB<H, T> for KeySpacedDBMut<'a, DB, H> where
DB: hash_db::HashDB<H, T>,
H: Hasher,
T: Default + PartialEq<T> + for<'b> From<&'b [u8]> + Clone + Send + Sync,
{
fn as_hash_db(&self) -> &dyn hash_db::HashDB<H, T> { &*self }
fn as_hash_db_mut<'b>(&'b mut self) -> &'b mut (dyn hash_db::HashDB<H, T> + 'b) {
&mut *self
}
}
mod trie_constants {
pub const EMPTY_TRIE: u8 = 0;
pub const NIBBLE_SIZE_BOUND: usize = u16::max_value() as usize;
pub const LEAF_PREFIX_MASK: u8 = 0b_01 << 6;
pub const BRANCH_WITHOUT_MASK: u8 = 0b_10 << 6;
pub const BRANCH_WITH_MASK: u8 = 0b_11 << 6;
}
#[cfg(test)]
mod tests {
use super::*;
use codec::{Encode, Compact};
use sp_core::Blake2Hasher;
use hash_db::{HashDB, Hasher};
use trie_db::{DBValue, TrieMut, Trie, NodeCodec as NodeCodecT};
use trie_standardmap::{Alphabet, ValueMode, StandardMap};
use hex_literal::hex;
type Layout = super::Layout<Blake2Hasher>;
fn hashed_null_node<T: TrieConfiguration>() -> TrieHash<T> {
<T::Codec as NodeCodecT>::hashed_null_node()
}
fn check_equivalent<T: TrieConfiguration>(input: &Vec<(&[u8], &[u8])>) {
{
let closed_form = T::trie_root(input.clone());
let d = T::trie_root_unhashed(input.clone());
println!("Data: {:#x?}, {:#x?}", d, Blake2Hasher::hash(&d[..]));
let persistent = {
let mut memdb = MemoryDB::default();
let mut root = Default::default();
let mut t = TrieDBMut::<T>::new(&mut memdb, &mut root);
for (x, y) in input.iter().rev() {
t.insert(x, y).unwrap();
}
t.root().clone()
};
assert_eq!(closed_form, persistent);
}
}
fn check_iteration<T: TrieConfiguration>(input: &Vec<(&[u8], &[u8])>) {
let mut memdb = MemoryDB::default();
let mut root = Default::default();
{
let mut t = TrieDBMut::<T>::new(&mut memdb, &mut root);
for (x, y) in input.clone() {
t.insert(x, y).unwrap();
}
}
{
let t = TrieDB::<T>::new(&mut memdb, &root).unwrap();
assert_eq!(
input.iter().map(|(i, j)| (i.to_vec(), j.to_vec())).collect::<Vec<_>>(),
t.iter().unwrap()
.map(|x| x.map(|y| (y.0, y.1.to_vec())).unwrap())
.collect::<Vec<_>>()
);
}
}
#[test]
fn default_trie_root() {
let mut db = MemoryDB::default();
let mut root = TrieHash::<Layout>::default();
let mut empty = TrieDBMut::<Layout>::new(&mut db, &mut root);
empty.commit();
let root1 = empty.root().as_ref().to_vec();
let root2: Vec<u8> = Layout::trie_root::<_, Vec<u8>, Vec<u8>>(
std::iter::empty(),
).as_ref().iter().cloned().collect();
assert_eq!(root1, root2);
}
#[test]
fn empty_is_equivalent() {
let input: Vec<(&[u8], &[u8])> = vec![];
check_equivalent::<Layout>(&input);
check_iteration::<Layout>(&input);
}
#[test]
fn leaf_is_equivalent() {
let input: Vec<(&[u8], &[u8])> = vec![(&[0xaa][..], &[0xbb][..])];
check_equivalent::<Layout>(&input);
check_iteration::<Layout>(&input);
}
#[test]
fn branch_is_equivalent() {
let input: Vec<(&[u8], &[u8])> = vec![
(&[0xaa][..], &[0x10][..]),
(&[0xba][..], &[0x11][..]),
];
check_equivalent::<Layout>(&input);
check_iteration::<Layout>(&input);
}
#[test]
fn extension_and_branch_is_equivalent() {
let input: Vec<(&[u8], &[u8])> = vec![
(&[0xaa][..], &[0x10][..]),
(&[0xab][..], &[0x11][..]),
];
check_equivalent::<Layout>(&input);
check_iteration::<Layout>(&input);
}
#[test]
fn standard_is_equivalent() {
let st = StandardMap {
alphabet: Alphabet::All,
min_key: 32,
journal_key: 0,
value_mode: ValueMode::Random,
count: 1000,
};
let mut d = st.make();
d.sort_unstable_by(|&(ref a, _), &(ref b, _)| a.cmp(b));
let dr = d.iter().map(|v| (&v.0[..], &v.1[..])).collect();
check_equivalent::<Layout>(&dr);
check_iteration::<Layout>(&dr);
}
#[test]
fn extension_and_branch_with_value_is_equivalent() {
let input: Vec<(&[u8], &[u8])> = vec![
(&[0xaa][..], &[0xa0][..]),
(&[0xaa, 0xaa][..], &[0xaa][..]),
(&[0xaa, 0xbb][..], &[0xab][..])
];
check_equivalent::<Layout>(&input);
check_iteration::<Layout>(&input);
}
#[test]
fn bigger_extension_and_branch_with_value_is_equivalent() {
let input: Vec<(&[u8], &[u8])> = vec![
(&[0xaa][..], &[0xa0][..]),
(&[0xaa, 0xaa][..], &[0xaa][..]),
(&[0xaa, 0xbb][..], &[0xab][..]),
(&[0xbb][..], &[0xb0][..]),
(&[0xbb, 0xbb][..], &[0xbb][..]),
(&[0xbb, 0xcc][..], &[0xbc][..]),
];
check_equivalent::<Layout>(&input);
check_iteration::<Layout>(&input);
}
#[test]
fn single_long_leaf_is_equivalent() {
let input: Vec<(&[u8], &[u8])> = vec![
(&[0xaa][..], &b"ABCABCABCABCABCABCABCABCABCABCABCABCABCABCABCABCABCABCABCABCABCABCABCABC"[..]),
(&[0xba][..], &[0x11][..]),
];
check_equivalent::<Layout>(&input);
check_iteration::<Layout>(&input);
}
#[test]
fn two_long_leaves_is_equivalent() {
let input: Vec<(&[u8], &[u8])> = vec![
(&[0xaa][..], &b"ABCABCABCABCABCABCABCABCABCABCABCABCABCABCABCABCABCABCABCABCABCABCABCABC"[..]),
(&[0xba][..], &b"ABCABCABCABCABCABCABCABCABCABCABCABCABCABCABCABCABCABCABCABCABCABCABCABC"[..])
];
check_equivalent::<Layout>(&input);
check_iteration::<Layout>(&input);
}
fn populate_trie<'db, T: TrieConfiguration>(
db: &'db mut dyn HashDB<T::Hash, DBValue>,
root: &'db mut TrieHash<T>,
v: &[(Vec<u8>, Vec<u8>)]
) -> TrieDBMut<'db, T> {
let mut t = TrieDBMut::<T>::new(db, root);
for i in 0..v.len() {
let key: &[u8]= &v[i].0;
let val: &[u8] = &v[i].1;
t.insert(key, val).unwrap();
}
t
}
fn unpopulate_trie<'db, T: TrieConfiguration>(
t: &mut TrieDBMut<'db, T>,
v: &[(Vec<u8>, Vec<u8>)],
) {
for i in v {
let key: &[u8]= &i.0;
t.remove(key).unwrap();
}
}
#[test]
fn random_should_work() {
let mut seed = <Blake2Hasher as Hasher>::Out::zero();
for test_i in 0..10000 {
if test_i % 50 == 0 {
println!("{:?} of 10000 stress tests done", test_i);
}
let x = StandardMap {
alphabet: Alphabet::Custom(b"@QWERTYUIOPASDFGHJKLZXCVBNM[/]^_".to_vec()),
min_key: 5,
journal_key: 0,
value_mode: ValueMode::Index,
count: 100,
}.make_with(seed.as_fixed_bytes_mut());
let real = Layout::trie_root(x.clone());
let mut memdb = MemoryDB::default();
let mut root = Default::default();
let mut memtrie = populate_trie::<Layout>(&mut memdb, &mut root, &x);
memtrie.commit();
if *memtrie.root() != real {
println!("TRIE MISMATCH");
println!("");
println!("{:?} vs {:?}", memtrie.root(), real);
for i in &x {
println!("{:#x?} -> {:#x?}", i.0, i.1);
}
}
assert_eq!(*memtrie.root(), real);
unpopulate_trie::<Layout>(&mut memtrie, &x);
memtrie.commit();
let hashed_null_node = hashed_null_node::<Layout>();
if *memtrie.root() != hashed_null_node {
println!("- TRIE MISMATCH");
println!("");
println!("{:?} vs {:?}", memtrie.root(), hashed_null_node);
for i in &x {
println!("{:#x?} -> {:#x?}", i.0, i.1);
}
}
assert_eq!(*memtrie.root(), hashed_null_node);
}
}
fn to_compact(n: u8) -> u8 {
Compact(n).encode()[0]
}
#[test]
fn codec_trie_empty() {
let input: Vec<(&[u8], &[u8])> = vec![];
let trie = Layout::trie_root_unhashed::<_, _, _>(input);
println!("trie: {:#x?}", trie);
assert_eq!(trie, vec![0x0]);
}
#[test]
fn codec_trie_single_tuple() {
let input = vec![
(vec![0xaa], vec![0xbb])
];
let trie = Layout::trie_root_unhashed::<_, _, _>(input);
println!("trie: {:#x?}", trie);
assert_eq!(trie, vec![
0x42,
0xaa,
to_compact(1),
0xbb
]);
}
#[test]
fn codec_trie_two_tuples_disjoint_keys() {
let input = vec![(&[0x48, 0x19], &[0xfe]), (&[0x13, 0x14], &[0xff])];
let trie = Layout::trie_root_unhashed::<_, _, _>(input);
println!("trie: {:#x?}", trie);
let mut ex = Vec::<u8>::new();
ex.push(0x80);
ex.push(0x12);
ex.push(0x00);
ex.push(to_compact(0x05));
ex.push(0x43);
ex.push(0x03);
ex.push(0x14);
ex.push(to_compact(0x01));
ex.push(0xff);
ex.push(to_compact(0x05));
ex.push(0x43);
ex.push(0x08);
ex.push(0x19);
ex.push(to_compact(0x01));
ex.push(0xfe);
assert_eq!(trie, ex);
}
#[test]
fn iterator_works() {
let pairs = vec![
(hex!("0103000000000000000464").to_vec(), hex!("0400000000").to_vec()),
(hex!("0103000000000000000469").to_vec(), hex!("0401000000").to_vec()),
];
let mut mdb = MemoryDB::default();
let mut root = Default::default();
let _ = populate_trie::<Layout>(&mut mdb, &mut root, &pairs);
let trie = TrieDB::<Layout>::new(&mdb, &root).unwrap();
let iter = trie.iter().unwrap();
let mut iter_pairs = Vec::new();
for pair in iter {
let (key, value) = pair.unwrap();
iter_pairs.push((key, value.to_vec()));
}
assert_eq!(pairs, iter_pairs);
}
#[test]
fn proof_non_inclusion_works() {
let pairs = vec![
(hex!("0102").to_vec(), hex!("01").to_vec()),
(hex!("0203").to_vec(), hex!("0405").to_vec()),
];
let mut memdb = MemoryDB::default();
let mut root = Default::default();
populate_trie::<Layout>(&mut memdb, &mut root, &pairs);
let non_included_key: Vec<u8> = hex!("0909").to_vec();
let proof = generate_trie_proof::<Layout, _, _, _>(
&memdb,
root,
&[non_included_key.clone()]
).unwrap();
assert!(verify_trie_proof::<Layout, _, _, Vec<u8>>(
&root,
&proof,
&[(non_included_key.clone(), None)],
).is_ok()
);
assert!(verify_trie_proof::<Layout, _, _, Vec<u8>>(
&root,
&proof,
&[(non_included_key, Some(hex!("1010").to_vec()))],
).is_err()
);
}
#[test]
fn proof_inclusion_works() {
let pairs = vec![
(hex!("0102").to_vec(), hex!("01").to_vec()),
(hex!("0203").to_vec(), hex!("0405").to_vec()),
];
let mut memdb = MemoryDB::default();
let mut root = Default::default();
populate_trie::<Layout>(&mut memdb, &mut root, &pairs);
let proof = generate_trie_proof::<Layout, _, _, _>(
&memdb,
root,
&[pairs[0].0.clone()]
).unwrap();
assert!(verify_trie_proof::<Layout, _, _, _>(
&root,
&proof,
&[(pairs[0].0.clone(), Some(pairs[0].1.clone()))]
).is_ok()
);
assert!(verify_trie_proof::<Layout, _, _, Vec<u8>>(
&root,
&proof,
&[(pairs[0].0.clone(), None)]
).is_err()
);
assert!(verify_trie_proof::<Layout, _, _, _>(
&root,
&proof,
&[(hex!("4242").to_vec(), Some(pairs[0].1.clone()))]
).is_err()
);
assert!(verify_trie_proof::<Layout, _, _, _>(
&root,
&proof,
&[(pairs[1].0.clone(), Some(pairs[1].1.clone()))]
).is_err()
);
}
}