[][src]Struct lock_api::RwLockUpgradableReadGuard

#[must_use = "if unused the RwLock will immediately unlock"]pub struct RwLockUpgradableReadGuard<'a, R: RawRwLockUpgrade, T: ?Sized> { /* fields omitted */ }

RAII structure used to release the upgradable read access of a lock when dropped.

Implementations

impl<'a, R: RawRwLockUpgrade + 'a, T: ?Sized + 'a> RwLockUpgradableReadGuard<'a, R, T>[src]

pub fn rwlock(s: &Self) -> &'a RwLock<R, T>[src]

Returns a reference to the original reader-writer lock object.

pub fn unlocked<F, U>(s: &mut Self, f: F) -> U where
    F: FnOnce() -> U, 
[src]

Temporarily unlocks the RwLock to execute the given function.

This is safe because &mut guarantees that there exist no other references to the data protected by the RwLock.

pub fn upgrade(s: Self) -> RwLockWriteGuard<'a, R, T>[src]

Atomically upgrades an upgradable read lock lock into a exclusive write lock, blocking the current thread until it can be acquired.

pub fn try_upgrade(s: Self) -> Result<RwLockWriteGuard<'a, R, T>, Self>[src]

Tries to atomically upgrade an upgradable read lock into a exclusive write lock.

If the access could not be granted at this time, then the current guard is returned.

impl<'a, R: RawRwLockUpgradeFair + 'a, T: ?Sized + 'a> RwLockUpgradableReadGuard<'a, R, T>[src]

pub fn unlock_fair(s: Self)[src]

Unlocks the RwLock using a fair unlock protocol.

By default, RwLock is unfair and allow the current thread to re-lock the RwLock before another has the chance to acquire the lock, even if that thread has been blocked on the RwLock for a long time. This is the default because it allows much higher throughput as it avoids forcing a context switch on every RwLock unlock. This can result in one thread acquiring a RwLock many more times than other threads.

However in some cases it can be beneficial to ensure fairness by forcing the lock to pass on to a waiting thread if there is one. This is done by using this method instead of dropping the RwLockUpgradableReadGuard normally.

pub fn unlocked_fair<F, U>(s: &mut Self, f: F) -> U where
    F: FnOnce() -> U, 
[src]

Temporarily unlocks the RwLock to execute the given function.

The RwLock is unlocked a fair unlock protocol.

This is safe because &mut guarantees that there exist no other references to the data protected by the RwLock.

pub fn bump(s: &mut Self)[src]

Temporarily yields the RwLock to a waiting thread if there is one.

This method is functionally equivalent to calling unlock_fair followed by upgradable_read, however it can be much more efficient in the case where there are no waiting threads.

impl<'a, R: RawRwLockUpgradeDowngrade + 'a, T: ?Sized + 'a> RwLockUpgradableReadGuard<'a, R, T>[src]

pub fn downgrade(s: Self) -> RwLockReadGuard<'a, R, T>[src]

Atomically downgrades an upgradable read lock lock into a shared read lock without allowing any writers to take exclusive access of the lock in the meantime.

Note that if there are any writers currently waiting to take the lock then other readers may not be able to acquire the lock even if it was downgraded.

impl<'a, R: RawRwLockUpgradeTimed + 'a, T: ?Sized + 'a> RwLockUpgradableReadGuard<'a, R, T>[src]

pub fn try_upgrade_for(
    s: Self,
    timeout: R::Duration
) -> Result<RwLockWriteGuard<'a, R, T>, Self>
[src]

Tries to atomically upgrade an upgradable read lock into a exclusive write lock, until a timeout is reached.

If the access could not be granted before the timeout expires, then the current guard is returned.

pub fn try_upgrade_until(
    s: Self,
    timeout: R::Instant
) -> Result<RwLockWriteGuard<'a, R, T>, Self>
[src]

Tries to atomically upgrade an upgradable read lock into a exclusive write lock, until a timeout is reached.

If the access could not be granted before the timeout expires, then the current guard is returned.

Trait Implementations

impl<'a, R: RawRwLockUpgrade + 'a, T: Debug + ?Sized + 'a> Debug for RwLockUpgradableReadGuard<'a, R, T>[src]

impl<'a, R: RawRwLockUpgrade + 'a, T: ?Sized + 'a> Deref for RwLockUpgradableReadGuard<'a, R, T>[src]

type Target = T

The resulting type after dereferencing.

impl<'a, R: RawRwLockUpgrade + 'a, T: Display + ?Sized + 'a> Display for RwLockUpgradableReadGuard<'a, R, T>[src]

impl<'a, R: RawRwLockUpgrade + 'a, T: ?Sized + 'a> Drop for RwLockUpgradableReadGuard<'a, R, T>[src]

impl<'a, R: RawRwLockUpgrade + 'a, T: ?Sized + Sync + 'a> Sync for RwLockUpgradableReadGuard<'a, R, T>[src]

Auto Trait Implementations

impl<'a, R, T: ?Sized> Send for RwLockUpgradableReadGuard<'a, R, T> where
    R: Sync,
    T: Send + Sync,
    <R as RawRwLock>::GuardMarker: Send

impl<'a, R, T: ?Sized> Unpin for RwLockUpgradableReadGuard<'a, R, T> where
    <R as RawRwLock>::GuardMarker: Unpin

Blanket Implementations

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> Borrow<T> for T where
    T: ?Sized
[src]

impl<T> BorrowMut<T> for T where
    T: ?Sized
[src]

impl<T> From<T> for T[src]

impl<T, U> Into<U> for T where
    U: From<T>, 
[src]

impl<T, U> TryFrom<U> for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T, U> TryInto<U> for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.