[−][src]Struct schnorrkel::keys::SecretKey
A seceret key for use with Ristretto Schnorr signatures.
Internally, these consist of a scalar mod l along with a seed for nonce generation. In this way, we ensure all scalar arithmatic works smoothly in operations like threshold or multi-signatures, or hierarchical deterministic key derivations.
We keep our secret key serializaion "almost" compatable with EdDSA "expanded" secret key serializaion by multiplying the scalar by the cofactor 8, as integers, and dividing on deserializaion. We do not however attempt to keep the scalar's high bit set, especially not during hierarchical deterministic key derivations, so some Ed25519 libraries might compute the public key incorrectly from our secret key.
Implementations
impl SecretKey
[src]
pub fn to_bytes(&self) -> [u8; 64]
[src]
Convert this SecretKey
into an array of 64 bytes with.
Returns an array of 64 bytes, with the first 32 bytes being the secret scalar represented cannonically, and the last 32 bytes being the seed for nonces.
Examples
use schnorrkel::{MiniSecretKey, SecretKey}; let mini_secret_key: MiniSecretKey = MiniSecretKey::generate(); let secret_key: SecretKey = mini_secret_key.expand(MiniSecretKey::UNIFORM_MODE); let secret_key_bytes: [u8; 64] = secret_key.to_bytes(); let bytes: [u8; 64] = secret_key.to_bytes(); let secret_key_again: SecretKey = SecretKey::from_bytes(&bytes[..]).unwrap(); assert_eq!(&bytes[..], & secret_key_again.to_bytes()[..]);
pub fn from_bytes(bytes: &[u8]) -> SignatureResult<SecretKey>
[src]
Construct an SecretKey
from a slice of bytes.
Examples
use schnorrkel::{MiniSecretKey, SecretKey, ExpansionMode, SignatureError}; let mini_secret_key: MiniSecretKey = MiniSecretKey::generate(); let secret_key: SecretKey = mini_secret_key.expand(MiniSecretKey::ED25519_MODE); let bytes: [u8; 64] = secret_key.to_bytes(); let secret_key_again: SecretKey = SecretKey::from_bytes(&bytes[..]).unwrap(); assert_eq!(secret_key_again, secret_key);
pub fn to_ed25519_bytes(&self) -> [u8; 64]
[src]
Convert this SecretKey
into an array of 64 bytes, corresponding to
an Ed25519 expanded secret key.
Returns an array of 64 bytes, with the first 32 bytes being the secret scalar shifted ed25519 style, and the last 32 bytes being the seed for nonces.
pub fn from_ed25519_bytes(bytes: &[u8]) -> SignatureResult<SecretKey>
[src]
Construct an SecretKey
from a slice of bytes, corresponding to
an Ed25519 expanded secret key.
Example
use schnorrkel::{SecretKey, SECRET_KEY_LENGTH}; use hex_literal::hex; let secret = hex!("28b0ae221c6bb06856b287f60d7ea0d98552ea5a16db16956849aa371db3eb51fd190cce74df356432b410bd64682309d6dedb27c76845daf388557cbac3ca34"); let public = hex!("46ebddef8cd9bb167dc30878d7113b7e168e6f0646beffd77d69d39bad76b47a"); let secret_key = SecretKey::from_ed25519_bytes(&secret[..]).unwrap(); assert_eq!(secret_key.to_public().to_bytes(), public);
pub fn generate_with<R>(csprng: R) -> SecretKey where
R: CryptoRng + RngCore,
[src]
R: CryptoRng + RngCore,
Generate an "unbiased" SecretKey
directly from a user
suplied csprng
uniformly, bypassing the MiniSecretKey
layer.
pub fn generate() -> SecretKey
[src]
Generate an "unbiased" SecretKey
directly,
bypassing the MiniSecretKey
layer.
pub fn to_public(&self) -> PublicKey
[src]
Derive the PublicKey
corresponding to this SecretKey
.
pub fn to_keypair(self) -> Keypair
[src]
Derive the PublicKey
corresponding to this SecretKey
.
impl SecretKey
[src]
pub fn sign<T: SigningTranscript>(
&self,
t: T,
public_key: &PublicKey
) -> Signature
[src]
&self,
t: T,
public_key: &PublicKey
) -> Signature
Sign a transcript with this SecretKey
.
Requires a SigningTranscript
, normally created from a
SigningContext
and a message, as well as the public key
correspodning to self
. Returns a Schnorr signature.
We employ a randomized nonce here, but also incorporate the transcript like in a derandomized scheme, but only after first extending the transcript by the public key. As a result, there should be no attacks even if both the random number generator fails and the function gets called with the wrong public key.
pub fn sign_doublecheck<T>(
&self,
t: T,
public_key: &PublicKey
) -> SignatureResult<Signature> where
T: SigningTranscript + Clone,
[src]
&self,
t: T,
public_key: &PublicKey
) -> SignatureResult<Signature> where
T: SigningTranscript + Clone,
Sign a message with this SecretKey
, but doublecheck the result.
pub fn sign_simple(
&self,
ctx: &[u8],
msg: &[u8],
public_key: &PublicKey
) -> Signature
[src]
&self,
ctx: &[u8],
msg: &[u8],
public_key: &PublicKey
) -> Signature
Sign a message with this SecretKey
.
pub fn sign_simple_doublecheck(
&self,
ctx: &[u8],
msg: &[u8],
public_key: &PublicKey
) -> SignatureResult<Signature>
[src]
&self,
ctx: &[u8],
msg: &[u8],
public_key: &PublicKey
) -> SignatureResult<Signature>
Sign a message with this SecretKey
, but doublecheck the result.
impl SecretKey
[src]
pub fn vrf_create_from_point(&self, input: RistrettoBoth) -> VRFInOut
[src]
Evaluate the VRF-like multiplication on an uncompressed point, probably not useful in this form.
pub fn vrf_create_from_compressed_point(
&self,
input: &VRFOutput
) -> SignatureResult<VRFInOut>
[src]
&self,
input: &VRFOutput
) -> SignatureResult<VRFInOut>
Evaluate the VRF-like multiplication on a compressed point, useful for proving key exchanges, OPRFs, or sequential VRFs.
We caution that such protocols could provide signing oracles
and note that vrf_create_from_point
cannot check for
problematic inputs like attach_input_hash
does.
impl SecretKey
[src]
pub fn hard_derive_mini_secret_key<B: AsRef<[u8]>>(
&self,
cc: Option<ChainCode>,
i: B
) -> (MiniSecretKey, ChainCode)
[src]
&self,
cc: Option<ChainCode>,
i: B
) -> (MiniSecretKey, ChainCode)
Vaguely BIP32-like "hard" derivation of a MiniSecretKey
from a SecretKey
We do not envision any "good reasons" why these "hard"
derivations should ever be used after the soft Derivation
trait. We similarly do not believe hard derivations
make any sense for ChainCode
s or ExtendedKey
s types.
Yet, some existing BIP32 workflows might do these things,
due to BIP32's de facto stnadardization and poor design.
In consequence, we provide this method to do "hard" derivations
in a way that should work with all BIP32 workflows and any
permissible mutations of SecretKey
. This means only that
we hash the SecretKey
's scalar, but not its nonce becuase
the secret key remains valid if the nonce is changed.
Trait Implementations
impl Clone for SecretKey
[src]
impl ConstantTimeEq for SecretKey
[src]
impl Debug for SecretKey
[src]
impl Derivation for SecretKey
[src]
fn derived_key<T>(&self, t: T, cc: ChainCode) -> (SecretKey, ChainCode) where
T: SigningTranscript,
[src]
T: SigningTranscript,
fn derived_key_simple<B: AsRef<[u8]>>(
&self,
cc: ChainCode,
i: B
) -> (Self, ChainCode)
[src]
&self,
cc: ChainCode,
i: B
) -> (Self, ChainCode)
fn derived_key_simple_rng<B, R>(
&self,
cc: ChainCode,
i: B,
rng: R
) -> (Self, ChainCode) where
B: AsRef<[u8]>,
R: RngCore + CryptoRng,
[src]
&self,
cc: ChainCode,
i: B,
rng: R
) -> (Self, ChainCode) where
B: AsRef<[u8]>,
R: RngCore + CryptoRng,
impl Drop for SecretKey
[src]
impl Eq for SecretKey
[src]
impl From<SecretKey> for PublicKey
[src]
impl From<SecretKey> for Keypair
[src]
impl PartialEq<SecretKey> for SecretKey
[src]
impl Zeroize for SecretKey
[src]
Auto Trait Implementations
impl RefUnwindSafe for SecretKey
impl Send for SecretKey
impl Sync for SecretKey
impl Unpin for SecretKey
impl UnwindSafe for SecretKey
Blanket Implementations
impl<T> Any for T where
T: 'static + ?Sized,
[src]
T: 'static + ?Sized,
impl<T> Borrow<T> for T where
T: ?Sized,
[src]
T: ?Sized,
impl<T> BorrowMut<T> for T where
T: ?Sized,
[src]
T: ?Sized,
fn borrow_mut(&mut self) -> &mut T
[src]
impl<T> From<T> for T
[src]
impl<T, U> Into<U> for T where
U: From<T>,
[src]
U: From<T>,
impl<T> Same<T> for T
[src]
type Output = T
Should always be Self
impl<T> ToOwned for T where
T: Clone,
[src]
T: Clone,
type Owned = T
The resulting type after obtaining ownership.
fn to_owned(&self) -> T
[src]
fn clone_into(&self, target: &mut T)
[src]
impl<T, U> TryFrom<U> for T where
U: Into<T>,
[src]
U: Into<T>,
type Error = Infallible
The type returned in the event of a conversion error.
fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>
[src]
impl<T, U> TryInto<U> for T where
U: TryFrom<T>,
[src]
U: TryFrom<T>,
type Error = <U as TryFrom<T>>::Error
The type returned in the event of a conversion error.
fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>
[src]
impl<V, T> VZip<V> for T where
V: MultiLane<T>,
[src]
V: MultiLane<T>,
impl<Z> Zeroize for Z where
Z: DefaultIsZeroes,
[src]
Z: DefaultIsZeroes,