Files
addr2line
ahash
aho_corasick
arrayref
arrayvec
artemis_asset
artemis_core
artemis_erc20_app
artemis_eth_app
artemis_ethereum
backtrace
base58
bip39
bitmask
bitvec
blake2_rfc
block_buffer
block_padding
byte_slice_cast
byte_tools
byteorder
cfg_if
clear_on_drop
const_random
const_random_macro
constant_time_eq
crunchy
crypto_mac
curve25519_dalek
derive_more
digest
ed25519_dalek
either
environmental
ethabi_decode
ethbloom
ethereum_types
failure
failure_derive
fake_simd
fixed_hash
frame_metadata
frame_support
frame_support_procedural
frame_support_procedural_tools
frame_support_procedural_tools_derive
frame_system
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
generic_array
getrandom
gimli
hash256_std_hasher
hash_db
hashbrown
hex
hex_literal
hmac
hmac_drbg
impl_codec
impl_rlp
impl_serde
impl_trait_for_tuples
inflector
cases
camelcase
case
classcase
kebabcase
pascalcase
screamingsnakecase
sentencecase
snakecase
tablecase
titlecase
traincase
numbers
deordinalize
ordinalize
string
constants
deconstantize
demodulize
pluralize
singularize
suffix
foreignkey
integer_sqrt
itertools
keccak
lazy_static
libc
lock_api
log
memchr
memory_db
memory_units
merlin
nodrop
num_bigint
num_cpus
num_integer
num_rational
num_traits
object
once_cell
opaque_debug
pallet_bridge
pallet_verifier
parity_scale_codec
parity_scale_codec_derive
parity_util_mem
parity_util_mem_derive
parity_wasm
parking_lot
parking_lot_core
paste
paste_impl
pbkdf2
pin_project
pin_project_internal
pin_utils
ppv_lite86
primitive_types
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
radium
rand
rand_chacha
rand_core
rand_pcg
ref_cast
ref_cast_impl
regex
regex_syntax
rental
rental_impl
rlp
rustc_demangle
rustc_hash
rustc_hex
schnorrkel
scopeguard
secp256k1
serde
serde_derive
sha2
slab
smallvec
sp_application_crypto
sp_arithmetic
sp_core
sp_debug_derive
sp_externalities
sp_inherents
sp_io
sp_panic_handler
sp_runtime
sp_runtime_interface
sp_runtime_interface_proc_macro
sp_state_machine
sp_std
sp_storage
sp_tracing
sp_trie
sp_version
sp_wasm_interface
stable_deref_trait
static_assertions
substrate_bip39
subtle
syn
synstructure
thread_local
tiny_keccak
toml
tracing
tracing_attributes
tracing_core
trie_db
trie_root
twox_hash
typenum
uint
unicode_normalization
unicode_xid
wasmi
wasmi_validation
zeroize
zeroize_derive
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
//! # aHash
//!
//! This hashing algorithm is intended to be a high performance, (hardware specific), keyed hash function.
//! This can be seen as a DOS resistant alternative to `FxHash`, or a fast equivalent to `SipHash`.
//! It provides a high speed hash algorithm, but where the result is not predictable without knowing a Key.
//! This allows it to be used in a `HashMap` without allowing for the possibility that an malicious user can
//! induce a collision.
//!
//! # How aHash works
//!
//! aHash uses the hardware AES instruction on x86 processors to provide a keyed hash function.
//! It uses two rounds of AES per hash. So it should not be considered cryptographically secure.
#![deny(clippy::correctness, clippy::complexity, clippy::perf)]
#![allow(clippy::pedantic, clippy::cast_lossless, clippy::unreadable_literal)]

#![cfg_attr(all(not(test), not(feature = "std")), no_std)]

#[macro_use]
mod convert;

#[cfg(all(any(target_arch = "x86", target_arch = "x86_64"), target_feature = "aes"))]
mod aes_hash;
mod fallback_hash;
#[cfg(test)]
mod hash_quality_test;

#[cfg(feature = "std")]
mod hash_map;
#[cfg(feature = "std")]
mod hash_set;

#[cfg(feature = "compile-time-rng")]
use const_random::const_random;

use core::hash::BuildHasher;
use core::sync::atomic::AtomicUsize;
use core::sync::atomic::Ordering;

#[cfg(all(any(target_arch = "x86", target_arch = "x86_64"), target_feature = "aes"))]
pub use crate::aes_hash::AHasher;

#[cfg(not(all(any(target_arch = "x86", target_arch = "x86_64"), target_feature = "aes")))]
pub use crate::fallback_hash::AHasher;

#[cfg(feature = "std")]
pub use crate::hash_map::AHashMap;
#[cfg(feature = "std")]
pub use crate::hash_set::AHashSet;

///This constant come from Kunth's prng
const MULTIPLE: u64 = 6364136223846793005;

// Const random provides randomized starting key with no runtime cost.
#[cfg(feature = "compile-time-rng")]
static SEED: AtomicUsize = AtomicUsize::new(const_random!(u64));

#[cfg(not(feature = "compile-time-rng"))]
static SEED: AtomicUsize = AtomicUsize::new(MULTIPLE as usize);

/// Provides a default [Hasher] compile time generated constants for keys.
/// This is typically used in conjunction with [`BuildHasherDefault`] to create
/// [AHasher]s in order to hash the keys of the map.
///
/// # Example
/// ```
/// use std::hash::BuildHasherDefault;
/// use ahash::{AHasher, ABuildHasher};
/// use std::collections::HashMap;
///
/// let mut map: HashMap<i32, i32, ABuildHasher> = HashMap::default();
/// map.insert(12, 34);
/// ```
///
/// [BuildHasherDefault]: std::hash::BuildHasherDefault
/// [Hasher]: std::hash::Hasher
/// [HashMap]: std::collections::HashMap
#[cfg(feature = "compile-time-rng")]
impl Default for AHasher {
    /// Constructs a new [AHasher] with compile time generated constants for keys.
    /// This means the keys will be the same from one instance to another,
    /// but different from build to the next. So if it is possible for a potential
    /// attacker to have access to the compiled binary it would be better
    /// to specify keys generated at runtime.
    ///
    /// This is defined only if the `compile-time-rng` feature is enabled.
    ///
    /// # Examples
    ///
    /// ```
    /// use ahash::AHasher;
    /// use std::hash::Hasher;
    ///
    /// let mut hasher_1 = AHasher::default();
    /// let mut hasher_2 = AHasher::default();
    ///
    /// hasher_1.write_u32(1234);
    /// hasher_2.write_u32(1234);
    ///
    /// assert_eq!(hasher_1.finish(), hasher_2.finish());
    /// ```
    #[inline]
    fn default() -> AHasher {
        AHasher::new_with_keys(const_random!(u64), const_random!(u64))
    }
}

/// Provides a [Hasher] factory. This is typically used (e.g. by [`HashMap`]) to create
/// [AHasher]s in order to hash the keys of the map. See `build_hasher` below.
///
/// [build_hasher]: ahash::
/// [Hasher]: std::hash::Hasher
/// [BuildHasher]: std::hash::BuildHasher
/// [HashMap]: std::collections::HashMap
#[derive(Clone)]
pub struct ABuildHasher {
    k0: u64,
    k1: u64,
}

impl ABuildHasher {
    #[inline]
    pub fn new() -> ABuildHasher {
        //Using a self pointer. When running with ASLR this is a random value.
        let previous = SEED.load(Ordering::Relaxed) as u64;
        let stack_mem_loc = &previous as *const _ as u64;
        //This is similar to the update function in the fallback.
        //only one multiply is needed because memory locations are not under an attackers control.
        let current_seed = previous.wrapping_mul(MULTIPLE).wrapping_add(stack_mem_loc).rotate_left(31);
        SEED.store(current_seed as usize, Ordering::Relaxed);
        ABuildHasher {
            k0: &SEED as *const _ as u64,
            k1: current_seed
        }
    }
}

impl Default for ABuildHasher {
    #[inline]
    fn default() -> Self {
        Self::new()
    }
}

impl BuildHasher for ABuildHasher {
    type Hasher = AHasher;

    /// Constructs a new [AHasher] with keys based on compile time generated constants** and the location
    /// of the this object in memory. This means that two different [BuildHasher]s will will generate
    /// [AHasher]s that will return different hashcodes, but [Hasher]s created from the same [BuildHasher]
    /// will generate the same hashes for the same input data.
    ///
    /// ** - only if the `compile-time-rng` feature is enabled.
    ///
    /// # Examples
    ///
    /// ```
    /// use ahash::{AHasher, ABuildHasher};
    /// use std::hash::{Hasher, BuildHasher};
    ///
    /// let build_hasher = ABuildHasher::new();
    /// let mut hasher_1 = build_hasher.build_hasher();
    /// let mut hasher_2 = build_hasher.build_hasher();
    ///
    /// hasher_1.write_u32(1234);
    /// hasher_2.write_u32(1234);
    ///
    /// assert_eq!(hasher_1.finish(), hasher_2.finish());
    ///
    /// let other_build_hasher = ABuildHasher::new();
    /// let mut different_hasher = other_build_hasher.build_hasher();
    /// different_hasher.write_u32(1234);
    /// assert_ne!(different_hasher.finish(), hasher_1.finish());
    /// ```
    /// [Hasher]: std::hash::Hasher
    /// [BuildHasher]: std::hash::BuildHasher
    /// [HashMap]: std::collections::HashMap
    #[inline]
    fn build_hasher(&self) -> AHasher {
        let (k0, k1) = scramble_keys(self.k0, self.k1);
        AHasher::new_with_keys(k0, k1)
    }
}

pub(crate) fn scramble_keys(k0: u64, k1: u64) -> (u64, u64) {
    //Scramble seeds (based on xoroshiro128+)
    //This is intentionally not similar the hash algorithm
    let result1 = k0.wrapping_add(k1);
    let k1 = k1 ^ k0;
    let k0 = k0.rotate_left(24) ^ k1 ^ (k1.wrapping_shl(16));
    let result2 = k0.wrapping_add(k1.rotate_left(37));
    (result2, result1)
}

#[cfg(test)]
mod test {
    use crate::convert::Convert;
    use crate::*;
    use core::hash::BuildHasherDefault;
    use std::collections::HashMap;

    #[test]
    fn test_default_builder() {
        let mut map = HashMap::<u32, u64, BuildHasherDefault<AHasher>>::default();
        map.insert(1, 3);
    }
    #[test]
    fn test_builder() {
        let mut map = HashMap::<u32, u64, ABuildHasher>::default();
        map.insert(1, 3);
    }

    #[test]
    fn test_conversion() {
        let input: &[u8] = b"dddddddd";
        let bytes: u64 = as_array!(input, 8).convert();
        assert_eq!(bytes, 0x6464646464646464);
    }

    #[test]
    fn test_ahasher_construction() {
        let _ = AHasher::new_with_keys(1245, 5678);
    }
}