Files
addr2line
ahash
aho_corasick
arrayref
arrayvec
artemis_asset
artemis_core
artemis_erc20_app
artemis_eth_app
artemis_ethereum
backtrace
base58
bip39
bitmask
bitvec
blake2_rfc
block_buffer
block_padding
byte_slice_cast
byte_tools
byteorder
cfg_if
clear_on_drop
const_random
const_random_macro
constant_time_eq
crunchy
crypto_mac
curve25519_dalek
derive_more
digest
ed25519_dalek
either
environmental
ethabi_decode
ethbloom
ethereum_types
failure
failure_derive
fake_simd
fixed_hash
frame_metadata
frame_support
frame_support_procedural
frame_support_procedural_tools
frame_support_procedural_tools_derive
frame_system
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
generic_array
getrandom
gimli
hash256_std_hasher
hash_db
hashbrown
hex
hex_literal
hmac
hmac_drbg
impl_codec
impl_rlp
impl_serde
impl_trait_for_tuples
inflector
cases
camelcase
case
classcase
kebabcase
pascalcase
screamingsnakecase
sentencecase
snakecase
tablecase
titlecase
traincase
numbers
deordinalize
ordinalize
string
constants
deconstantize
demodulize
pluralize
singularize
suffix
foreignkey
integer_sqrt
itertools
keccak
lazy_static
libc
lock_api
log
memchr
memory_db
memory_units
merlin
nodrop
num_bigint
num_cpus
num_integer
num_rational
num_traits
object
once_cell
opaque_debug
pallet_bridge
pallet_verifier
parity_scale_codec
parity_scale_codec_derive
parity_util_mem
parity_util_mem_derive
parity_wasm
parking_lot
parking_lot_core
paste
paste_impl
pbkdf2
pin_project
pin_project_internal
pin_utils
ppv_lite86
primitive_types
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
radium
rand
rand_chacha
rand_core
rand_pcg
ref_cast
ref_cast_impl
regex
regex_syntax
rental
rental_impl
rlp
rustc_demangle
rustc_hash
rustc_hex
schnorrkel
scopeguard
secp256k1
serde
serde_derive
sha2
slab
smallvec
sp_application_crypto
sp_arithmetic
sp_core
sp_debug_derive
sp_externalities
sp_inherents
sp_io
sp_panic_handler
sp_runtime
sp_runtime_interface
sp_runtime_interface_proc_macro
sp_state_machine
sp_std
sp_storage
sp_tracing
sp_trie
sp_version
sp_wasm_interface
stable_deref_trait
static_assertions
substrate_bip39
subtle
syn
synstructure
thread_local
tiny_keccak
toml
tracing
tracing_attributes
tracing_core
trie_db
trie_root
twox_hash
typenum
uint
unicode_normalization
unicode_xid
wasmi
wasmi_validation
zeroize
zeroize_derive
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
//! Pure Rust implementation of the secp256k1 curve and fast ECDSA
//! signatures. The secp256k1 curve is used excusively in Bitcoin and
//! Ethereum alike cryptocurrencies.

#![deny(unused_import_braces, unused_imports,
        unused_comparisons, unused_must_use,
        unused_variables, non_shorthand_field_patterns,
        unreachable_code, unused_parens)]

#![cfg_attr(not(feature = "std"), no_std)]

#[macro_use]
mod field;
#[macro_use]
mod group;
mod scalar;
mod ecmult;
mod ecdsa;
mod ecdh;
mod error;
mod der;

#[macro_use]
extern crate alloc;

use core::convert::TryFrom;
#[cfg(feature = "hmac")]
use hmac_drbg::HmacDRBG;
#[cfg(feature = "hmac")]
use sha2::Sha256;
#[cfg(feature = "hmac")]
use typenum::U32;
use arrayref::{array_ref, array_mut_ref};
use rand::Rng;
use digest::generic_array::GenericArray;
use digest::Digest;

use crate::field::Field;
use crate::group::{Affine, Jacobian};
use crate::scalar::Scalar;
use crate::ecmult::{ECMULT_CONTEXT, ECMULT_GEN_CONTEXT};

pub use crate::error::Error;

/// Curve related structs.
pub mod curve {
    pub use crate::field::Field;
    pub use crate::group::{Affine, Jacobian, AffineStorage, AFFINE_G, CURVE_B};
    pub use crate::scalar::Scalar;

    pub use crate::ecmult::{ECMultContext, ECMultGenContext,
                            ECMULT_CONTEXT, ECMULT_GEN_CONTEXT};
}

/// Utilities to manipulate the secp256k1 curve parameters.
pub mod util {
    pub const TAG_PUBKEY_EVEN: u8 = 0x02;
    pub const TAG_PUBKEY_ODD: u8 = 0x03;
    pub const TAG_PUBKEY_FULL: u8 = 0x04;
    pub const TAG_PUBKEY_HYBRID_EVEN: u8 = 0x06;
    pub const TAG_PUBKEY_HYBRID_ODD: u8 = 0x07;

    pub const MESSAGE_SIZE: usize = 32;
    pub const SECRET_KEY_SIZE: usize = 32;
    pub const RAW_PUBLIC_KEY_SIZE: usize = 64;
    pub const FULL_PUBLIC_KEY_SIZE: usize = 65;
    pub const COMPRESSED_PUBLIC_KEY_SIZE: usize = 33;
    pub const SIGNATURE_SIZE: usize = 64;
    pub const DER_MAX_SIGNATURE_SIZE: usize = 72;

    pub use crate::group::{AFFINE_INFINITY, JACOBIAN_INFINITY,
                           set_table_gej_var, globalz_set_table_gej};
    pub use crate::ecmult::{WINDOW_A, WINDOW_G, ECMULT_TABLE_SIZE_A, ECMULT_TABLE_SIZE_G,
                            odd_multiples_table};

    pub use crate::der::SignatureArray;
}

#[derive(Debug, Clone, Eq, PartialEq)]
/// Public key on a secp256k1 curve.
pub struct PublicKey(Affine);
#[derive(Debug, Clone, Eq, PartialEq)]
/// Secret key (256-bit) on a secp256k1 curve.
pub struct SecretKey(Scalar);
#[derive(Debug, Clone, Eq, PartialEq)]
/// An ECDSA signature.
pub struct Signature {
    pub r: Scalar,
    pub s: Scalar
}
#[derive(Debug, Clone, Copy, Eq, PartialEq)]
/// Tag used for public key recovery from signatures.
pub struct RecoveryId(u8);
#[derive(Debug, Clone, Eq, PartialEq)]
/// Hashed message input to an ECDSA signature.
pub struct Message(pub Scalar);
#[derive(Debug, Clone, Eq, PartialEq)]
/// Shared secret using ECDH.
pub struct SharedSecret<D: Digest>(GenericArray<u8, D::OutputSize>);

/// Format for public key parsing.
pub enum PublicKeyFormat {
    /// Compressed public key, 33 bytes.
    Compressed,
    /// Full length public key, 65 bytes.
    Full,
    /// Raw public key, 64 bytes.
    Raw,
}

impl PublicKey {
    pub fn from_secret_key(seckey: &SecretKey) -> PublicKey {
        let mut pj = Jacobian::default();
        ECMULT_GEN_CONTEXT.ecmult_gen(&mut pj, &seckey.0);
        let mut p = Affine::default();
        p.set_gej(&pj);
        PublicKey(p)
    }

    pub fn parse_slice(p: &[u8], format: Option<PublicKeyFormat>) -> Result<PublicKey, Error> {
        let format = match (p.len(), format) {
            (util::FULL_PUBLIC_KEY_SIZE, None) |
            (util::FULL_PUBLIC_KEY_SIZE, Some(PublicKeyFormat::Full)) =>
                PublicKeyFormat::Full,
            (util::COMPRESSED_PUBLIC_KEY_SIZE, None) |
            (util::COMPRESSED_PUBLIC_KEY_SIZE, Some(PublicKeyFormat::Compressed)) =>
                PublicKeyFormat::Compressed,
            (util::RAW_PUBLIC_KEY_SIZE, None) |
            (util::RAW_PUBLIC_KEY_SIZE, Some(PublicKeyFormat::Raw)) =>
                PublicKeyFormat::Raw,
            _ => return Err(Error::InvalidInputLength),
        };

        match format {
            PublicKeyFormat::Full => {
                let mut a = [0; util::FULL_PUBLIC_KEY_SIZE];
                a.copy_from_slice(p);
                Self::parse(&a)
            },
            PublicKeyFormat::Raw => {
                use util::TAG_PUBKEY_FULL;

                let mut a = [0; util::FULL_PUBLIC_KEY_SIZE];
                a[0] = TAG_PUBKEY_FULL;
                a[1..].copy_from_slice(p);
                Self::parse(&a)
            },
            PublicKeyFormat::Compressed => {
                let mut a = [0; util::COMPRESSED_PUBLIC_KEY_SIZE];
                a.copy_from_slice(p);
                Self::parse_compressed(&a)
            },
        }
    }

    pub fn parse(p: &[u8; util::FULL_PUBLIC_KEY_SIZE]) -> Result<PublicKey, Error> {
        use util::{TAG_PUBKEY_FULL, TAG_PUBKEY_HYBRID_EVEN, TAG_PUBKEY_HYBRID_ODD};

        if !(p[0] == TAG_PUBKEY_FULL || p[0] == TAG_PUBKEY_HYBRID_EVEN || p[0] == TAG_PUBKEY_HYBRID_ODD) {
            return Err(Error::InvalidPublicKey);
        }
        let mut x = Field::default();
        let mut y = Field::default();
        if !x.set_b32(array_ref!(p, 1, 32)) {
            return Err(Error::InvalidPublicKey);
        }
        if !y.set_b32(array_ref!(p, 33, 32)) {
            return Err(Error::InvalidPublicKey);
        }
        let mut elem = Affine::default();
        elem.set_xy(&x, &y);
        if (p[0] == TAG_PUBKEY_HYBRID_EVEN || p[0] == TAG_PUBKEY_HYBRID_ODD) &&
            (y.is_odd() != (p[0] == TAG_PUBKEY_HYBRID_ODD))
        {
            return Err(Error::InvalidPublicKey);
        }
        if elem.is_infinity() {
            return Err(Error::InvalidPublicKey);
        }
        if elem.is_valid_var() {
            return Ok(PublicKey(elem));
        } else {
            return Err(Error::InvalidPublicKey);
        }
    }

    pub fn parse_compressed(p: &[u8; util::COMPRESSED_PUBLIC_KEY_SIZE]) -> Result<PublicKey, Error> {
        use util::{TAG_PUBKEY_EVEN, TAG_PUBKEY_ODD};

        if !(p[0] == TAG_PUBKEY_EVEN || p[0] == TAG_PUBKEY_ODD) {
            return Err(Error::InvalidPublicKey);
        }
        let mut x = Field::default();
        if !x.set_b32(array_ref!(p, 1, 32)) {
            return Err(Error::InvalidPublicKey);
        }
        let mut elem = Affine::default();
        elem.set_xo_var(&x, p[0] == TAG_PUBKEY_ODD);
        if elem.is_infinity() {
            return Err(Error::InvalidPublicKey);
        }
        if elem.is_valid_var() {
            return Ok(PublicKey(elem));
        } else {
            return Err(Error::InvalidPublicKey);
        }
    }

    pub fn serialize(&self) -> [u8; util::FULL_PUBLIC_KEY_SIZE] {
        use util::TAG_PUBKEY_FULL;

        debug_assert!(!self.0.is_infinity());

        let mut ret = [0u8; 65];
        let mut elem = self.0.clone();

        elem.x.normalize_var();
        elem.y.normalize_var();
        elem.x.fill_b32(array_mut_ref!(ret, 1, 32));
        elem.y.fill_b32(array_mut_ref!(ret, 33, 32));
        ret[0] = TAG_PUBKEY_FULL;

        ret
    }

    pub fn serialize_compressed(&self) -> [u8; util::COMPRESSED_PUBLIC_KEY_SIZE] {
        use util::{TAG_PUBKEY_ODD, TAG_PUBKEY_EVEN};

        debug_assert!(!self.0.is_infinity());

        let mut ret = [0u8; 33];
        let mut elem = self.0.clone();

        elem.x.normalize_var();
        elem.y.normalize_var();
        elem.x.fill_b32(array_mut_ref!(ret, 1, 32));
        ret[0] = if elem.y.is_odd() {
            TAG_PUBKEY_ODD
        } else {
            TAG_PUBKEY_EVEN
        };

        ret
    }

    pub fn tweak_add_assign(&mut self, tweak: &SecretKey) -> Result<(), Error> {
        let mut r = Jacobian::default();
        let a = Jacobian::from_ge(&self.0);
        let one = Scalar::from_int(1);
        ECMULT_CONTEXT.ecmult(&mut r, &a, &one, &tweak.0);

        if r.is_infinity() {
            return Err(Error::TweakOutOfRange);
        }

        self.0.set_gej(&r);
        Ok(())
    }

    pub fn tweak_mul_assign(&mut self, tweak: &SecretKey) -> Result<(), Error> {
        if tweak.0.is_zero() {
            return Err(Error::TweakOutOfRange);
        }

        let mut r = Jacobian::default();
        let zero = Scalar::from_int(0);
        let pt = Jacobian::from_ge(&self.0);
        ECMULT_CONTEXT.ecmult(&mut r, &pt, &tweak.0, &zero);

        self.0.set_gej(&r);
        Ok(())
    }

    pub fn combine(keys: &[PublicKey]) -> Result<Self, Error> {
        let mut qj = Jacobian::default();
        qj.set_infinity();

        for key in keys {
            qj = qj.add_ge(&key.0);
        }

        if qj.is_infinity() {
            return Err(Error::InvalidPublicKey);
        }

        let q = Affine::from_gej(&qj);
        Ok(PublicKey(q))
    }
}

impl Into<Affine> for PublicKey {
    fn into(self) -> Affine {
        self.0
    }
}

impl SecretKey {
    pub fn parse(p: &[u8; util::SECRET_KEY_SIZE]) -> Result<SecretKey, Error> {
        let mut elem = Scalar::default();
        if !bool::from(elem.set_b32(p)) {
            Self::try_from(elem)
        } else {
            Err(Error::InvalidSecretKey)
        }
    }

    pub fn parse_slice(p: &[u8]) -> Result<SecretKey, Error> {
        if p.len() != util::SECRET_KEY_SIZE {
            return Err(Error::InvalidInputLength);
        }

        let mut a = [0; 32];
        a.copy_from_slice(p);
        Self::parse(&a)
    }

    pub fn random<R: Rng>(rng: &mut R) -> SecretKey {
        loop {
            let mut ret = [0u8; util::SECRET_KEY_SIZE];
            rng.fill_bytes(&mut ret);

            match Self::parse(&ret) {
                Ok(key) => return key,
                Err(_) => (),
            }
        }
    }

    pub fn serialize(&self) -> [u8; util::SECRET_KEY_SIZE] {
        self.0.b32()
    }

    pub fn tweak_add_assign(&mut self, tweak: &SecretKey) -> Result<(), Error> {
        let v = &self.0 + &tweak.0;
        if v.is_zero() {
            return Err(Error::TweakOutOfRange);
        }
        self.0 = v;
        Ok(())
    }

    pub fn tweak_mul_assign(&mut self, tweak: &SecretKey) -> Result<(), Error> {
        if tweak.0.is_zero() {
            return Err(Error::TweakOutOfRange);
        }

        self.0 *= &tweak.0;
        Ok(())
    }

    pub fn inv(&self) -> Self {
        SecretKey(self.0.inv())
    }
}

impl Default for SecretKey {
    fn default() -> SecretKey {
        let mut elem = Scalar::default();
        let overflowed = bool::from(elem.set_b32(
            &[0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
		      0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,0x00,
              0x00,0x00,0x00,0x00,0x00,0x01]
        ));
        debug_assert!(!overflowed);
        debug_assert!(!elem.is_zero());
        SecretKey(elem)
    }
}

impl Into<Scalar> for SecretKey {
    fn into(self) -> Scalar {
        self.0.clone()
    }
}

impl TryFrom<Scalar> for SecretKey {
    type Error = Error;

    fn try_from(scalar: Scalar) -> Result<Self, Error> {
        if scalar.is_zero() {
            Err(Error::InvalidSecretKey)
        } else {
            Ok(Self(scalar))
        }
    }
}

impl Drop for SecretKey {
    fn drop(&mut self) {
        self.0.clear();
    }
}

impl core::fmt::LowerHex for SecretKey {
    fn fmt(&self, f: &mut core::fmt::Formatter<'_>) -> core::fmt::Result {
        let scalar: Scalar = self.clone().into();

        write!(f, "{:x}", scalar)
    }
}

impl Signature {
    pub fn parse(p: &[u8; util::SIGNATURE_SIZE]) -> Signature {
        let mut r = Scalar::default();
        let mut s = Scalar::default();

        // Okay for signature to overflow
        let _ = r.set_b32(array_ref!(p, 0, 32));
        let _ = s.set_b32(array_ref!(p, 32, 32));

        Signature { r, s }
    }

    pub fn parse_slice(p: &[u8]) -> Result<Signature, Error> {
        if p.len() != util::SIGNATURE_SIZE {
            return Err(Error::InvalidInputLength);
        }

        let mut a = [0; util::SIGNATURE_SIZE];
        a.copy_from_slice(p);
        Ok(Self::parse(&a))
    }

    pub fn parse_der(p: &[u8]) -> Result<Signature, Error> {
        let mut decoder = der::Decoder::new(p);

        decoder.read_constructed_sequence()?;
        let rlen = decoder.read_len()?;

        if rlen != decoder.remaining_len() {
            return Err(Error::InvalidSignature);
        }

        let r = decoder.read_integer()?;
        let s = decoder.read_integer()?;

        if decoder.remaining_len() != 0 {
            return Err(Error::InvalidSignature);
        }

        Ok(Signature { r, s })
    }

    /// Converts a "lax DER"-encoded byte slice to a signature. This is basically
    /// only useful for validating signatures in the Bitcoin blockchain from before
    /// 2016. It should never be used in new applications. This library does not
    /// support serializing to this "format"
    pub fn parse_der_lax(p: &[u8]) -> Result<Signature, Error> {
        let mut decoder = der::Decoder::new(p);

        decoder.read_constructed_sequence()?;
        decoder.read_seq_len_lax()?;

        let r = decoder.read_integer_lax()?;
        let s = decoder.read_integer_lax()?;

        Ok(Signature { r, s })
    }

    /// Normalizes a signature to a "low S" form. In ECDSA, signatures are
    /// of the form (r, s) where r and s are numbers lying in some finite
    /// field. The verification equation will pass for (r, s) iff it passes
    /// for (r, -s), so it is possible to ``modify'' signatures in transit
    /// by flipping the sign of s. This does not constitute a forgery since
    /// the signed message still cannot be changed, but for some applications,
    /// changing even the signature itself can be a problem. Such applications
    /// require a "strong signature". It is believed that ECDSA is a strong
    /// signature except for this ambiguity in the sign of s, so to accommodate
    /// these applications libsecp256k1 will only accept signatures for which
    /// s is in the lower half of the field range. This eliminates the
    /// ambiguity.
    ///
    /// However, for some systems, signatures with high s-values are considered
    /// valid. (For example, parsing the historic Bitcoin blockchain requires
    /// this.) For these applications we provide this normalization function,
    /// which ensures that the s value lies in the lower half of its range.
    pub fn normalize_s(&mut self) {
        if self.s.is_high() {
            self.s = -self.s.clone();
        }
    }


    pub fn serialize(&self) -> [u8; util::SIGNATURE_SIZE] {
        let mut ret = [0u8; 64];
        self.r.fill_b32(array_mut_ref!(ret, 0, 32));
        self.s.fill_b32(array_mut_ref!(ret, 32, 32));
        ret
    }

    pub fn serialize_der(&self) -> der::SignatureArray {
        fn fill_scalar_with_leading_zero(scalar: &Scalar) -> [u8; 33] {
            let mut ret = [0u8; 33];
            scalar.fill_b32(array_mut_ref!(ret, 1, 32));
            ret
        }

        let r_full = fill_scalar_with_leading_zero(&self.r);
        let s_full = fill_scalar_with_leading_zero(&self.s);

        fn integer_slice(full: &[u8; 33]) -> &[u8] {
            let mut len = 33;
            while len > 1 &&
                full[full.len() - len] == 0 &&
                full[full.len() - len + 1] < 0x80
            {
                len -= 1;
            }
            &full[(full.len() - len)..]
        }

        let r = integer_slice(&r_full);
        let s = integer_slice(&s_full);

        let mut ret = der::SignatureArray::new(6 + r.len() + s.len());
        {
            let l = ret.as_mut();
            l[0] = 0x30;
            l[1] = 4 + r.len() as u8 + s.len() as u8;
            l[2] = 0x02;
            l[3] = r.len() as u8;
            l[4..(4 + r.len())].copy_from_slice(r);
            l[4 + r.len()] = 0x02;
            l[5 + r.len()] = s.len() as u8;
            l[(6 + r.len())..(6 + r.len() + s.len())].copy_from_slice(s);
        }

        ret
    }
}

impl Message {
    pub fn parse(p: &[u8; util::MESSAGE_SIZE]) -> Message {
        let mut m = Scalar::default();

        // Okay for message to overflow.
        let _ = m.set_b32(p);

        Message(m)
    }

    pub fn parse_slice(p: &[u8]) -> Result<Message, Error> {
        if p.len() != util::MESSAGE_SIZE {
            return Err(Error::InvalidInputLength);
        }

        let mut a = [0; util::MESSAGE_SIZE];
        a.copy_from_slice(p);
        Ok(Self::parse(&a))
    }

    pub fn serialize(&self) -> [u8; util::MESSAGE_SIZE] {
        self.0.b32()
    }
}

impl RecoveryId {
    /// Parse recovery ID starting with 0.
    pub fn parse(p: u8) -> Result<RecoveryId, Error> {
        if p < 4 {
            Ok(RecoveryId(p))
        } else {
            Err(Error::InvalidRecoveryId)
        }
    }

    /// Parse recovery ID as Ethereum RPC format, starting with 27.
    pub fn parse_rpc(p: u8) -> Result<RecoveryId, Error> {
        if p >= 27 && p < 27 + 4 {
            RecoveryId::parse(p - 27)
        } else {
            Err(Error::InvalidRecoveryId)
        }
    }

    pub fn serialize(&self) -> u8 {
        self.0
    }
}

impl Into<u8> for RecoveryId {
    fn into(self) -> u8 {
        self.0
    }
}

impl Into<i32> for RecoveryId {
    fn into(self) -> i32 {
        self.0 as i32
    }
}

impl<D: Digest + Default> SharedSecret<D> {
    pub fn new(pubkey: &PublicKey, seckey: &SecretKey) -> Result<SharedSecret<D>, Error> {
        let inner = match ECMULT_CONTEXT.ecdh_raw::<D>(&pubkey.0, &seckey.0) {
            Some(val) => val,
            None => return Err(Error::InvalidSecretKey),
        };

        Ok(SharedSecret(inner))
    }

}

impl<D: Digest> AsRef<[u8]> for SharedSecret<D> {
    fn as_ref(&self) -> &[u8] {
        &self.0.as_ref()
    }
}

impl<D: Digest> Drop for SharedSecret<D> {
    fn drop(&mut self) {
        let zero_array = GenericArray::clone_from_slice(&vec![0;D::output_size()]);
         unsafe {
            core::ptr::write_volatile(&mut self.0, zero_array);
        }
    }
}

/// Check signature is a valid message signed by public key.
pub fn verify(message: &Message, signature: &Signature, pubkey: &PublicKey) -> bool {
    ECMULT_CONTEXT.verify_raw(&signature.r, &signature.s, &pubkey.0, &message.0)
}

/// Recover public key from a signed message.
pub fn recover(message: &Message, signature: &Signature, recovery_id: &RecoveryId) -> Result<PublicKey, Error> {
    ECMULT_CONTEXT.recover_raw(&signature.r, &signature.s, recovery_id.0, &message.0).map(|v| PublicKey(v))
}

/// Sign a message using the secret key.
#[cfg(feature = "hmac")]
pub fn sign(message: &Message, seckey: &SecretKey) -> (Signature, RecoveryId) {
    let seckey_b32 = seckey.0.b32();
    let message_b32 = message.0.b32();

    let mut drbg = HmacDRBG::<Sha256>::new(&seckey_b32, &message_b32, &[]);
    let mut nonce = Scalar::default();
    let mut overflow;

    let result;
    loop {
        let generated = drbg.generate::<U32>(None);
        overflow = bool::from(nonce.set_b32(array_ref!(generated, 0, 32)));

        if !overflow && !nonce.is_zero() {
            match ECMULT_GEN_CONTEXT.sign_raw(&seckey.0, &message.0, &nonce) {
                Ok(val) => {
                    result = val;
                    break
                },
                Err(_) => (),
            }
        }
    }

    #[allow(unused_assignments)]
    {
        nonce = Scalar::default();
    }
    let (sigr, sigs, recid) = result;

    (Signature {
        r: sigr,
        s: sigs,
    }, RecoveryId(recid))
}

#[cfg(test)]
mod tests {
    use crate::SecretKey;
    use hex_literal::hex;

    #[test]
    fn secret_key_inverse_is_sane() {
        let sk = SecretKey::parse(&[1; 32]).unwrap();
        let inv = sk.inv();
        let invinv = inv.inv();
        assert_eq!(sk, invinv);
        // Check that the inverse of `[1; 32]` is same as rust-secp256k1
        assert_eq!(inv, SecretKey::parse(&hex!("1536f1d756d1abf83aaf173bc5ee3fc487c93010f18624d80bd6d4038fadd59e")).unwrap())
    }
}