Files
addr2line
ahash
aho_corasick
arrayref
arrayvec
artemis_asset
artemis_core
artemis_erc20_app
artemis_eth_app
artemis_ethereum
backtrace
base58
bip39
bitmask
bitvec
blake2_rfc
block_buffer
block_padding
byte_slice_cast
byte_tools
byteorder
cfg_if
clear_on_drop
const_random
const_random_macro
constant_time_eq
crunchy
crypto_mac
curve25519_dalek
derive_more
digest
ed25519_dalek
either
environmental
ethabi_decode
ethbloom
ethereum_types
failure
failure_derive
fake_simd
fixed_hash
frame_metadata
frame_support
frame_support_procedural
frame_support_procedural_tools
frame_support_procedural_tools_derive
frame_system
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
generic_array
getrandom
gimli
hash256_std_hasher
hash_db
hashbrown
hex
hex_literal
hmac
hmac_drbg
impl_codec
impl_rlp
impl_serde
impl_trait_for_tuples
inflector
cases
camelcase
case
classcase
kebabcase
pascalcase
screamingsnakecase
sentencecase
snakecase
tablecase
titlecase
traincase
numbers
deordinalize
ordinalize
string
constants
deconstantize
demodulize
pluralize
singularize
suffix
foreignkey
integer_sqrt
itertools
keccak
lazy_static
libc
lock_api
log
memchr
memory_db
memory_units
merlin
nodrop
num_bigint
num_cpus
num_integer
num_rational
num_traits
object
once_cell
opaque_debug
pallet_bridge
pallet_verifier
parity_scale_codec
parity_scale_codec_derive
parity_util_mem
parity_util_mem_derive
parity_wasm
parking_lot
parking_lot_core
paste
paste_impl
pbkdf2
pin_project
pin_project_internal
pin_utils
ppv_lite86
primitive_types
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
radium
rand
rand_chacha
rand_core
rand_pcg
ref_cast
ref_cast_impl
regex
regex_syntax
rental
rental_impl
rlp
rustc_demangle
rustc_hash
rustc_hex
schnorrkel
scopeguard
secp256k1
serde
serde_derive
sha2
slab
smallvec
sp_application_crypto
sp_arithmetic
sp_core
sp_debug_derive
sp_externalities
sp_inherents
sp_io
sp_panic_handler
sp_runtime
sp_runtime_interface
sp_runtime_interface_proc_macro
sp_state_machine
sp_std
sp_storage
sp_tracing
sp_trie
sp_version
sp_wasm_interface
stable_deref_trait
static_assertions
substrate_bip39
subtle
syn
synstructure
thread_local
tiny_keccak
toml
tracing
tracing_attributes
tracing_core
trie_db
trie_root
twox_hash
typenum
uint
unicode_normalization
unicode_xid
wasmi
wasmi_validation
zeroize
zeroize_derive
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
use std::char;
use std::cmp::Ordering;
use std::fmt;
use std::ops;
use std::u32;

use syntax;

use literal::LiteralSearcher;
use prog::InstEmptyLook;
use utf8::{decode_last_utf8, decode_utf8};

/// Represents a location in the input.
#[derive(Clone, Copy, Debug)]
pub struct InputAt {
    pos: usize,
    c: Char,
    byte: Option<u8>,
    len: usize,
}

impl InputAt {
    /// Returns true iff this position is at the beginning of the input.
    pub fn is_start(&self) -> bool {
        self.pos == 0
    }

    /// Returns true iff this position is past the end of the input.
    pub fn is_end(&self) -> bool {
        self.c.is_none() && self.byte.is_none()
    }

    /// Returns the character at this position.
    ///
    /// If this position is just before or after the input, then an absent
    /// character is returned.
    pub fn char(&self) -> Char {
        self.c
    }

    /// Returns the byte at this position.
    pub fn byte(&self) -> Option<u8> {
        self.byte
    }

    /// Returns the UTF-8 width of the character at this position.
    pub fn len(&self) -> usize {
        self.len
    }

    /// Returns whether the UTF-8 width of the character at this position
    /// is zero.
    pub fn is_empty(&self) -> bool {
        self.len == 0
    }

    /// Returns the byte offset of this position.
    pub fn pos(&self) -> usize {
        self.pos
    }

    /// Returns the byte offset of the next position in the input.
    pub fn next_pos(&self) -> usize {
        self.pos + self.len
    }
}

/// An abstraction over input used in the matching engines.
pub trait Input: fmt::Debug {
    /// Return an encoding of the position at byte offset `i`.
    fn at(&self, i: usize) -> InputAt;

    /// Return the Unicode character occurring next to `at`.
    ///
    /// If no such character could be decoded, then `Char` is absent.
    fn next_char(&self, at: InputAt) -> Char;

    /// Return the Unicode character occurring previous to `at`.
    ///
    /// If no such character could be decoded, then `Char` is absent.
    fn previous_char(&self, at: InputAt) -> Char;

    /// Return true if the given empty width instruction matches at the
    /// input position given.
    fn is_empty_match(&self, at: InputAt, empty: &InstEmptyLook) -> bool;

    /// Scan the input for a matching prefix.
    fn prefix_at(
        &self,
        prefixes: &LiteralSearcher,
        at: InputAt,
    ) -> Option<InputAt>;

    /// The number of bytes in the input.
    fn len(&self) -> usize;

    /// Whether the input is empty.
    fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Return the given input as a sequence of bytes.
    fn as_bytes(&self) -> &[u8];
}

impl<'a, T: Input> Input for &'a T {
    fn at(&self, i: usize) -> InputAt {
        (**self).at(i)
    }

    fn next_char(&self, at: InputAt) -> Char {
        (**self).next_char(at)
    }

    fn previous_char(&self, at: InputAt) -> Char {
        (**self).previous_char(at)
    }

    fn is_empty_match(&self, at: InputAt, empty: &InstEmptyLook) -> bool {
        (**self).is_empty_match(at, empty)
    }

    fn prefix_at(
        &self,
        prefixes: &LiteralSearcher,
        at: InputAt,
    ) -> Option<InputAt> {
        (**self).prefix_at(prefixes, at)
    }

    fn len(&self) -> usize {
        (**self).len()
    }

    fn as_bytes(&self) -> &[u8] {
        (**self).as_bytes()
    }
}

/// An input reader over characters.
#[derive(Clone, Copy, Debug)]
pub struct CharInput<'t>(&'t [u8]);

impl<'t> CharInput<'t> {
    /// Return a new character input reader for the given string.
    pub fn new(s: &'t [u8]) -> CharInput<'t> {
        CharInput(s)
    }
}

impl<'t> ops::Deref for CharInput<'t> {
    type Target = [u8];

    fn deref(&self) -> &[u8] {
        self.0
    }
}

impl<'t> Input for CharInput<'t> {
    fn at(&self, i: usize) -> InputAt {
        if i >= self.len() {
            InputAt { pos: self.len(), c: None.into(), byte: None, len: 0 }
        } else {
            let c = decode_utf8(&self[i..]).map(|(c, _)| c).into();
            InputAt { pos: i, c: c, byte: None, len: c.len_utf8() }
        }
    }

    fn next_char(&self, at: InputAt) -> Char {
        at.char()
    }

    fn previous_char(&self, at: InputAt) -> Char {
        decode_last_utf8(&self[..at.pos()]).map(|(c, _)| c).into()
    }

    fn is_empty_match(&self, at: InputAt, empty: &InstEmptyLook) -> bool {
        use prog::EmptyLook::*;
        match empty.look {
            StartLine => {
                let c = self.previous_char(at);
                at.pos() == 0 || c == '\n'
            }
            EndLine => {
                let c = self.next_char(at);
                at.pos() == self.len() || c == '\n'
            }
            StartText => at.pos() == 0,
            EndText => at.pos() == self.len(),
            WordBoundary => {
                let (c1, c2) = (self.previous_char(at), self.next_char(at));
                c1.is_word_char() != c2.is_word_char()
            }
            NotWordBoundary => {
                let (c1, c2) = (self.previous_char(at), self.next_char(at));
                c1.is_word_char() == c2.is_word_char()
            }
            WordBoundaryAscii => {
                let (c1, c2) = (self.previous_char(at), self.next_char(at));
                c1.is_word_byte() != c2.is_word_byte()
            }
            NotWordBoundaryAscii => {
                let (c1, c2) = (self.previous_char(at), self.next_char(at));
                c1.is_word_byte() == c2.is_word_byte()
            }
        }
    }

    fn prefix_at(
        &self,
        prefixes: &LiteralSearcher,
        at: InputAt,
    ) -> Option<InputAt> {
        prefixes.find(&self[at.pos()..]).map(|(s, _)| self.at(at.pos() + s))
    }

    fn len(&self) -> usize {
        self.0.len()
    }

    fn as_bytes(&self) -> &[u8] {
        self.0
    }
}

/// An input reader over bytes.
#[derive(Clone, Copy, Debug)]
pub struct ByteInput<'t> {
    text: &'t [u8],
    only_utf8: bool,
}

impl<'t> ByteInput<'t> {
    /// Return a new byte-based input reader for the given string.
    pub fn new(text: &'t [u8], only_utf8: bool) -> ByteInput<'t> {
        ByteInput { text: text, only_utf8: only_utf8 }
    }
}

impl<'t> ops::Deref for ByteInput<'t> {
    type Target = [u8];

    fn deref(&self) -> &[u8] {
        self.text
    }
}

impl<'t> Input for ByteInput<'t> {
    fn at(&self, i: usize) -> InputAt {
        if i >= self.len() {
            InputAt { pos: self.len(), c: None.into(), byte: None, len: 0 }
        } else {
            InputAt {
                pos: i,
                c: None.into(),
                byte: self.get(i).cloned(),
                len: 1,
            }
        }
    }

    fn next_char(&self, at: InputAt) -> Char {
        decode_utf8(&self[at.pos()..]).map(|(c, _)| c).into()
    }

    fn previous_char(&self, at: InputAt) -> Char {
        decode_last_utf8(&self[..at.pos()]).map(|(c, _)| c).into()
    }

    fn is_empty_match(&self, at: InputAt, empty: &InstEmptyLook) -> bool {
        use prog::EmptyLook::*;
        match empty.look {
            StartLine => {
                let c = self.previous_char(at);
                at.pos() == 0 || c == '\n'
            }
            EndLine => {
                let c = self.next_char(at);
                at.pos() == self.len() || c == '\n'
            }
            StartText => at.pos() == 0,
            EndText => at.pos() == self.len(),
            WordBoundary => {
                let (c1, c2) = (self.previous_char(at), self.next_char(at));
                c1.is_word_char() != c2.is_word_char()
            }
            NotWordBoundary => {
                let (c1, c2) = (self.previous_char(at), self.next_char(at));
                c1.is_word_char() == c2.is_word_char()
            }
            WordBoundaryAscii => {
                let (c1, c2) = (self.previous_char(at), self.next_char(at));
                if self.only_utf8 {
                    // If we must match UTF-8, then we can't match word
                    // boundaries at invalid UTF-8.
                    if c1.is_none() && !at.is_start() {
                        return false;
                    }
                    if c2.is_none() && !at.is_end() {
                        return false;
                    }
                }
                c1.is_word_byte() != c2.is_word_byte()
            }
            NotWordBoundaryAscii => {
                let (c1, c2) = (self.previous_char(at), self.next_char(at));
                if self.only_utf8 {
                    // If we must match UTF-8, then we can't match word
                    // boundaries at invalid UTF-8.
                    if c1.is_none() && !at.is_start() {
                        return false;
                    }
                    if c2.is_none() && !at.is_end() {
                        return false;
                    }
                }
                c1.is_word_byte() == c2.is_word_byte()
            }
        }
    }

    fn prefix_at(
        &self,
        prefixes: &LiteralSearcher,
        at: InputAt,
    ) -> Option<InputAt> {
        prefixes.find(&self[at.pos()..]).map(|(s, _)| self.at(at.pos() + s))
    }

    fn len(&self) -> usize {
        self.text.len()
    }

    fn as_bytes(&self) -> &[u8] {
        self.text
    }
}

/// An inline representation of `Option<char>`.
///
/// This eliminates the need to do case analysis on `Option<char>` to determine
/// ordinality with other characters.
///
/// (The `Option<char>` is not related to encoding. Instead, it is used in the
/// matching engines to represent the beginning and ending boundaries of the
/// search text.)
#[derive(Clone, Copy, Hash, PartialEq, Eq, PartialOrd, Ord)]
pub struct Char(u32);

impl fmt::Debug for Char {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        match char::from_u32(self.0) {
            None => write!(f, "Empty"),
            Some(c) => write!(f, "{:?}", c),
        }
    }
}

impl Char {
    /// Returns true iff the character is absent.
    #[inline]
    pub fn is_none(self) -> bool {
        self.0 == u32::MAX
    }

    /// Returns the length of the character's UTF-8 encoding.
    ///
    /// If the character is absent, then `1` is returned.
    #[inline]
    pub fn len_utf8(self) -> usize {
        char::from_u32(self.0).map_or(1, |c| c.len_utf8())
    }

    /// Returns true iff the character is a word character.
    ///
    /// If the character is absent, then false is returned.
    pub fn is_word_char(self) -> bool {
        // is_word_character can panic if the Unicode data for \w isn't
        // available. However, our compiler ensures that if a Unicode word
        // boundary is used, then the data must also be available. If it isn't,
        // then the compiler returns an error.
        char::from_u32(self.0).map_or(false, syntax::is_word_character)
    }

    /// Returns true iff the byte is a word byte.
    ///
    /// If the byte is absent, then false is returned.
    pub fn is_word_byte(self) -> bool {
        match char::from_u32(self.0) {
            Some(c) if c <= '\u{7F}' => syntax::is_word_byte(c as u8),
            None | Some(_) => false,
        }
    }
}

impl From<char> for Char {
    fn from(c: char) -> Char {
        Char(c as u32)
    }
}

impl From<Option<char>> for Char {
    fn from(c: Option<char>) -> Char {
        c.map_or(Char(u32::MAX), |c| c.into())
    }
}

impl PartialEq<char> for Char {
    #[inline]
    fn eq(&self, other: &char) -> bool {
        self.0 == *other as u32
    }
}

impl PartialEq<Char> for char {
    #[inline]
    fn eq(&self, other: &Char) -> bool {
        *self as u32 == other.0
    }
}

impl PartialOrd<char> for Char {
    #[inline]
    fn partial_cmp(&self, other: &char) -> Option<Ordering> {
        self.0.partial_cmp(&(*other as u32))
    }
}

impl PartialOrd<Char> for char {
    #[inline]
    fn partial_cmp(&self, other: &Char) -> Option<Ordering> {
        (*self as u32).partial_cmp(&other.0)
    }
}