Files
addr2line
ahash
aho_corasick
arrayref
arrayvec
artemis_asset
artemis_core
artemis_erc20_app
artemis_eth_app
artemis_ethereum
backtrace
base58
bip39
bitmask
bitvec
blake2_rfc
block_buffer
block_padding
byte_slice_cast
byte_tools
byteorder
cfg_if
clear_on_drop
const_random
const_random_macro
constant_time_eq
crunchy
crypto_mac
curve25519_dalek
derive_more
digest
ed25519_dalek
either
environmental
ethabi_decode
ethbloom
ethereum_types
failure
failure_derive
fake_simd
fixed_hash
frame_metadata
frame_support
frame_support_procedural
frame_support_procedural_tools
frame_support_procedural_tools_derive
frame_system
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
generic_array
getrandom
gimli
hash256_std_hasher
hash_db
hashbrown
hex
hex_literal
hmac
hmac_drbg
impl_codec
impl_rlp
impl_serde
impl_trait_for_tuples
inflector
cases
camelcase
case
classcase
kebabcase
pascalcase
screamingsnakecase
sentencecase
snakecase
tablecase
titlecase
traincase
numbers
deordinalize
ordinalize
string
constants
deconstantize
demodulize
pluralize
singularize
suffix
foreignkey
integer_sqrt
itertools
keccak
lazy_static
libc
lock_api
log
memchr
memory_db
memory_units
merlin
nodrop
num_bigint
num_cpus
num_integer
num_rational
num_traits
object
once_cell
opaque_debug
pallet_bridge
pallet_verifier
parity_scale_codec
parity_scale_codec_derive
parity_util_mem
parity_util_mem_derive
parity_wasm
parking_lot
parking_lot_core
paste
paste_impl
pbkdf2
pin_project
pin_project_internal
pin_utils
ppv_lite86
primitive_types
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
radium
rand
rand_chacha
rand_core
rand_pcg
ref_cast
ref_cast_impl
regex
regex_syntax
rental
rental_impl
rlp
rustc_demangle
rustc_hash
rustc_hex
schnorrkel
scopeguard
secp256k1
serde
serde_derive
sha2
slab
smallvec
sp_application_crypto
sp_arithmetic
sp_core
sp_debug_derive
sp_externalities
sp_inherents
sp_io
sp_panic_handler
sp_runtime
sp_runtime_interface
sp_runtime_interface_proc_macro
sp_state_machine
sp_std
sp_storage
sp_tracing
sp_trie
sp_version
sp_wasm_interface
stable_deref_trait
static_assertions
substrate_bip39
subtle
syn
synstructure
thread_local
tiny_keccak
toml
tracing
tracing_attributes
tracing_core
trie_db
trie_root
twox_hash
typenum
uint
unicode_normalization
unicode_xid
wasmi
wasmi_validation
zeroize
zeroize_derive
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
/*! Heavy bit reference.

Regrettably, while producing a read reference to a bit inside a `BitSlice` is
relatively easy to do, Rust’s rules make it impossible to produce a write
reference to one. This is because references must be addresses that the holder
can derefence without type consideration. Read references inspect the `BitSlice`
data sequence, and then produce references to static `true` and `false` values
as appropriate; the returned address does not need to be actually within the
referent memory region.

A write reference, however, is required to be the address of a `bool` within the
`BitSlice`, which can have `0u8` or `1u8` written into it. This rule makes
production of any `&mut bool` from any `&mut BitSlice` impossible. Instead, the
`BitMut` structure serves as a heavy-weight referential object, that cannot be
used in the `&mut` write reference system, as a good-enough substitute.
!*/

use crate::{
	access::BitAccess,
	indices::BitIdx,
	order::BitOrder,
	slice::BitSlice,
	store::BitStore,
};

use core::{
	marker::PhantomData,
	ops::{
		Deref,
		DerefMut,
	},
	ptr::NonNull,
};

/** Proxy referential type, equivalent to `&mut bool`.

This structure is three words wide, and cannot ever fit into the existing Rust
language and library infrastructure in the way `&BitSlice` does. While `&mut`
write references are themselves an affine type, with a guaranteed single point
of destruction and no duplication, the language forbids writing finalization
logic for them.

This means that a custom reference type which implements `Deref` and `DerefMut`
to a location within the canonical handle, and on `Drop` writes the `Deref`
location into referent memory, is impossible. Short of that, a C++-style thick
reference-like type is as close as Rust will allow.
**/
pub struct BitMut<'a, O, T>
where O: BitOrder, T: 'a + BitStore {
	/// Inform the compiler that this has an exclusive borrow of a `BitSlice`
	pub(super) _parent: PhantomData<&'a mut BitSlice<O, T>>,
	/// Typed pointer to the memory element containing the proxied bit.
	pub(super) data: NonNull<T::Access>,
	/// Index of the proxied bit inside the targeted memory element.
	pub(super) head: BitIdx<T>,
	/// A local cache for `Deref` usage.
	pub(super) bit: bool,
}

impl<O, T> Deref for BitMut<'_, O, T>
where O: BitOrder, T: BitStore {
	type Target = bool;

	fn deref(&self) -> &Self::Target {
		&self.bit
	}
}

impl<O, T> DerefMut for BitMut<'_, O, T>
where O: BitOrder, T: BitStore {
	fn deref_mut(&mut self) -> &mut Self::Target {
		&mut self.bit
	}
}

impl<O, T> Drop for BitMut<'_, O, T>
where O: BitOrder, T: BitStore {
	fn drop(&mut self) {
		unsafe { (*self.data.as_ptr()).set::<O>(self.head, self.bit) }
	}
}