Files
addr2line
ahash
aho_corasick
arrayref
arrayvec
artemis_asset
artemis_core
artemis_erc20_app
artemis_eth_app
artemis_ethereum
backtrace
base58
bip39
bitmask
bitvec
blake2_rfc
block_buffer
block_padding
byte_slice_cast
byte_tools
byteorder
cfg_if
clear_on_drop
const_random
const_random_macro
constant_time_eq
crunchy
crypto_mac
curve25519_dalek
derive_more
digest
ed25519_dalek
either
environmental
ethabi_decode
ethbloom
ethereum_types
failure
failure_derive
fake_simd
fixed_hash
frame_metadata
frame_support
frame_support_procedural
frame_support_procedural_tools
frame_support_procedural_tools_derive
frame_system
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
generic_array
getrandom
gimli
hash256_std_hasher
hash_db
hashbrown
hex
hex_literal
hmac
hmac_drbg
impl_codec
impl_rlp
impl_serde
impl_trait_for_tuples
inflector
cases
camelcase
case
classcase
kebabcase
pascalcase
screamingsnakecase
sentencecase
snakecase
tablecase
titlecase
traincase
numbers
deordinalize
ordinalize
string
constants
deconstantize
demodulize
pluralize
singularize
suffix
foreignkey
integer_sqrt
itertools
keccak
lazy_static
libc
lock_api
log
memchr
memory_db
memory_units
merlin
nodrop
num_bigint
num_cpus
num_integer
num_rational
num_traits
object
once_cell
opaque_debug
pallet_bridge
pallet_verifier
parity_scale_codec
parity_scale_codec_derive
parity_util_mem
parity_util_mem_derive
parity_wasm
parking_lot
parking_lot_core
paste
paste_impl
pbkdf2
pin_project
pin_project_internal
pin_utils
ppv_lite86
primitive_types
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
radium
rand
rand_chacha
rand_core
rand_pcg
ref_cast
ref_cast_impl
regex
regex_syntax
rental
rental_impl
rlp
rustc_demangle
rustc_hash
rustc_hex
schnorrkel
scopeguard
secp256k1
serde
serde_derive
sha2
slab
smallvec
sp_application_crypto
sp_arithmetic
sp_core
sp_debug_derive
sp_externalities
sp_inherents
sp_io
sp_panic_handler
sp_runtime
sp_runtime_interface
sp_runtime_interface_proc_macro
sp_state_machine
sp_std
sp_storage
sp_tracing
sp_trie
sp_version
sp_wasm_interface
stable_deref_trait
static_assertions
substrate_bip39
subtle
syn
synstructure
thread_local
tiny_keccak
toml
tracing
tracing_attributes
tracing_core
trie_db
trie_root
twox_hash
typenum
uint
unicode_normalization
unicode_xid
wasmi
wasmi_validation
zeroize
zeroize_derive
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
// Copyright 2016 Amanieu d'Antras
//
// Licensed under the Apache License, Version 2.0, <LICENSE-APACHE or
// http://apache.org/licenses/LICENSE-2.0> or the MIT license <LICENSE-MIT or
// http://opensource.org/licenses/MIT>, at your option. This file may not be
// copied, modified, or distributed except according to those terms.

use crate::raw_fair_mutex::RawFairMutex;
use lock_api;

/// A mutual exclusive primitive that is always fair, useful for protecting shared data
///
/// This mutex will block threads waiting for the lock to become available. The
/// mutex can also be statically initialized or created via a `new`
/// constructor. Each mutex has a type parameter which represents the data that
/// it is protecting. The data can only be accessed through the RAII guards
/// returned from `lock` and `try_lock`, which guarantees that the data is only
/// ever accessed when the mutex is locked.
///
/// The regular mutex provided by `parking_lot` uses eventual locking fairness
/// (after some time it will default to the fair algorithm), but eventual
/// fairness does not provide the same garantees a always fair method would.
/// Fair mutexes are generally slower, but sometimes needed. This wrapper was
/// created to avoid using a unfair protocol when it's forbidden by mistake.
///
/// In a fair mutex the lock is provided to whichever thread asked first,
/// they form a queue and always follow the first-in first-out order. This
/// means some thread in the queue won't be able to steal the lock and use it fast
/// to increase throughput, at the cost of latency. Since the response time will grow
/// for some threads that are waiting for the lock and losing to faster but later ones,
/// but it may make sending more responses possible.
///
/// A fair mutex may not be interesting if threads have different priorities (this is known as
/// priority inversion).
///
/// # Differences from the standard library `Mutex`
///
/// - No poisoning, the lock is released normally on panic.
/// - Only requires 1 byte of space, whereas the standard library boxes the
///   `FairMutex` due to platform limitations.
/// - Can be statically constructed (requires the `const_fn` nightly feature).
/// - Does not require any drop glue when dropped.
/// - Inline fast path for the uncontended case.
/// - Efficient handling of micro-contention using adaptive spinning.
/// - Allows raw locking & unlocking without a guard.
///
/// # Examples
///
/// ```
/// use parking_lot::FairMutex;
/// use std::sync::{Arc, mpsc::channel};
/// use std::thread;
///
/// const N: usize = 10;
///
/// // Spawn a few threads to increment a shared variable (non-atomically), and
/// // let the main thread know once all increments are done.
/// //
/// // Here we're using an Arc to share memory among threads, and the data inside
/// // the Arc is protected with a mutex.
/// let data = Arc::new(FairMutex::new(0));
///
/// let (tx, rx) = channel();
/// for _ in 0..10 {
///     let (data, tx) = (Arc::clone(&data), tx.clone());
///     thread::spawn(move || {
///         // The shared state can only be accessed once the lock is held.
///         // Our non-atomic increment is safe because we're the only thread
///         // which can access the shared state when the lock is held.
///         let mut data = data.lock();
///         *data += 1;
///         if *data == N {
///             tx.send(()).unwrap();
///         }
///         // the lock is unlocked here when `data` goes out of scope.
///     });
/// }
///
/// rx.recv().unwrap();
/// ```
pub type FairMutex<T> = lock_api::Mutex<RawFairMutex, T>;

/// Creates a new fair mutex in an unlocked state ready for use.
///
/// This allows creating a fair mutex in a constant context on stable Rust.
pub const fn const_fair_mutex<T>(val: T) -> FairMutex<T> {
    FairMutex::const_new(<RawFairMutex as lock_api::RawMutex>::INIT, val)
}

/// An RAII implementation of a "scoped lock" of a mutex. When this structure is
/// dropped (falls out of scope), the lock will be unlocked.
///
/// The data protected by the mutex can be accessed through this guard via its
/// `Deref` and `DerefMut` implementations.
pub type FairMutexGuard<'a, T> = lock_api::MutexGuard<'a, RawFairMutex, T>;

/// An RAII mutex guard returned by `FairMutexGuard::map`, which can point to a
/// subfield of the protected data.
///
/// The main difference between `MappedFairMutexGuard` and `FairMutexGuard` is that the
/// former doesn't support temporarily unlocking and re-locking, since that
/// could introduce soundness issues if the locked object is modified by another
/// thread.
pub type MappedFairMutexGuard<'a, T> = lock_api::MappedMutexGuard<'a, RawFairMutex, T>;

#[cfg(test)]
mod tests {
    use crate::FairMutex;
    use std::sync::atomic::{AtomicUsize, Ordering};
    use std::sync::mpsc::channel;
    use std::sync::Arc;
    use std::thread;

    #[cfg(feature = "serde")]
    use bincode::{deserialize, serialize};

    #[derive(Eq, PartialEq, Debug)]
    struct NonCopy(i32);

    #[test]
    fn smoke() {
        let m = FairMutex::new(());
        drop(m.lock());
        drop(m.lock());
    }

    #[test]
    fn lots_and_lots() {
        const J: u32 = 1000;
        const K: u32 = 3;

        let m = Arc::new(FairMutex::new(0));

        fn inc(m: &FairMutex<u32>) {
            for _ in 0..J {
                *m.lock() += 1;
            }
        }

        let (tx, rx) = channel();
        for _ in 0..K {
            let tx2 = tx.clone();
            let m2 = m.clone();
            thread::spawn(move || {
                inc(&m2);
                tx2.send(()).unwrap();
            });
            let tx2 = tx.clone();
            let m2 = m.clone();
            thread::spawn(move || {
                inc(&m2);
                tx2.send(()).unwrap();
            });
        }

        drop(tx);
        for _ in 0..2 * K {
            rx.recv().unwrap();
        }
        assert_eq!(*m.lock(), J * K * 2);
    }

    #[test]
    fn try_lock() {
        let m = FairMutex::new(());
        *m.try_lock().unwrap() = ();
    }

    #[test]
    fn test_into_inner() {
        let m = FairMutex::new(NonCopy(10));
        assert_eq!(m.into_inner(), NonCopy(10));
    }

    #[test]
    fn test_into_inner_drop() {
        struct Foo(Arc<AtomicUsize>);
        impl Drop for Foo {
            fn drop(&mut self) {
                self.0.fetch_add(1, Ordering::SeqCst);
            }
        }
        let num_drops = Arc::new(AtomicUsize::new(0));
        let m = FairMutex::new(Foo(num_drops.clone()));
        assert_eq!(num_drops.load(Ordering::SeqCst), 0);
        {
            let _inner = m.into_inner();
            assert_eq!(num_drops.load(Ordering::SeqCst), 0);
        }
        assert_eq!(num_drops.load(Ordering::SeqCst), 1);
    }

    #[test]
    fn test_get_mut() {
        let mut m = FairMutex::new(NonCopy(10));
        *m.get_mut() = NonCopy(20);
        assert_eq!(m.into_inner(), NonCopy(20));
    }

    #[test]
    fn test_mutex_arc_nested() {
        // Tests nested mutexes and access
        // to underlying data.
        let arc = Arc::new(FairMutex::new(1));
        let arc2 = Arc::new(FairMutex::new(arc));
        let (tx, rx) = channel();
        let _t = thread::spawn(move || {
            let lock = arc2.lock();
            let lock2 = lock.lock();
            assert_eq!(*lock2, 1);
            tx.send(()).unwrap();
        });
        rx.recv().unwrap();
    }

    #[test]
    fn test_mutex_arc_access_in_unwind() {
        let arc = Arc::new(FairMutex::new(1));
        let arc2 = arc.clone();
        let _ = thread::spawn(move || {
            struct Unwinder {
                i: Arc<FairMutex<i32>>,
            }
            impl Drop for Unwinder {
                fn drop(&mut self) {
                    *self.i.lock() += 1;
                }
            }
            let _u = Unwinder { i: arc2 };
            panic!();
        })
        .join();
        let lock = arc.lock();
        assert_eq!(*lock, 2);
    }

    #[test]
    fn test_mutex_unsized() {
        let mutex: &FairMutex<[i32]> = &FairMutex::new([1, 2, 3]);
        {
            let b = &mut *mutex.lock();
            b[0] = 4;
            b[2] = 5;
        }
        let comp: &[i32] = &[4, 2, 5];
        assert_eq!(&*mutex.lock(), comp);
    }

    #[test]
    fn test_mutexguard_sync() {
        fn sync<T: Sync>(_: T) {}

        let mutex = FairMutex::new(());
        sync(mutex.lock());
    }

    #[test]
    fn test_mutex_debug() {
        let mutex = FairMutex::new(vec![0u8, 10]);

        assert_eq!(format!("{:?}", mutex), "Mutex { data: [0, 10] }");
        let _lock = mutex.lock();
        assert_eq!(format!("{:?}", mutex), "Mutex { data: <locked> }");
    }

    #[cfg(feature = "serde")]
    #[test]
    fn test_serde() {
        let contents: Vec<u8> = vec![0, 1, 2];
        let mutex = FairMutex::new(contents.clone());

        let serialized = serialize(&mutex).unwrap();
        let deserialized: FairMutex<Vec<u8>> = deserialize(&serialized).unwrap();

        assert_eq!(*(mutex.lock()), *(deserialized.lock()));
        assert_eq!(contents, *(deserialized.lock()));
    }
}