Files
addr2line
ahash
aho_corasick
arrayref
arrayvec
artemis_asset
artemis_core
artemis_erc20_app
artemis_eth_app
artemis_ethereum
backtrace
base58
bip39
bitmask
bitvec
blake2_rfc
block_buffer
block_padding
byte_slice_cast
byte_tools
byteorder
cfg_if
clear_on_drop
const_random
const_random_macro
constant_time_eq
crunchy
crypto_mac
curve25519_dalek
derive_more
digest
ed25519_dalek
either
environmental
ethabi_decode
ethbloom
ethereum_types
failure
failure_derive
fake_simd
fixed_hash
frame_metadata
frame_support
frame_support_procedural
frame_support_procedural_tools
frame_support_procedural_tools_derive
frame_system
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
generic_array
getrandom
gimli
hash256_std_hasher
hash_db
hashbrown
hex
hex_literal
hmac
hmac_drbg
impl_codec
impl_rlp
impl_serde
impl_trait_for_tuples
inflector
cases
camelcase
case
classcase
kebabcase
pascalcase
screamingsnakecase
sentencecase
snakecase
tablecase
titlecase
traincase
numbers
deordinalize
ordinalize
string
constants
deconstantize
demodulize
pluralize
singularize
suffix
foreignkey
integer_sqrt
itertools
keccak
lazy_static
libc
lock_api
log
memchr
memory_db
memory_units
merlin
nodrop
num_bigint
num_cpus
num_integer
num_rational
num_traits
object
once_cell
opaque_debug
pallet_bridge
pallet_verifier
parity_scale_codec
parity_scale_codec_derive
parity_util_mem
parity_util_mem_derive
parity_wasm
parking_lot
parking_lot_core
paste
paste_impl
pbkdf2
pin_project
pin_project_internal
pin_utils
ppv_lite86
primitive_types
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
radium
rand
rand_chacha
rand_core
rand_pcg
ref_cast
ref_cast_impl
regex
regex_syntax
rental
rental_impl
rlp
rustc_demangle
rustc_hash
rustc_hex
schnorrkel
scopeguard
secp256k1
serde
serde_derive
sha2
slab
smallvec
sp_application_crypto
sp_arithmetic
sp_core
sp_debug_derive
sp_externalities
sp_inherents
sp_io
sp_panic_handler
sp_runtime
sp_runtime_interface
sp_runtime_interface_proc_macro
sp_state_machine
sp_std
sp_storage
sp_tracing
sp_trie
sp_version
sp_wasm_interface
stable_deref_trait
static_assertions
substrate_bip39
subtle
syn
synstructure
thread_local
tiny_keccak
toml
tracing
tracing_attributes
tracing_core
trie_db
trie_root
twox_hash
typenum
uint
unicode_normalization
unicode_xid
wasmi
wasmi_validation
zeroize
zeroize_derive
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
use subtle::Choice;
use crate::group::{Affine, Jacobian, AffineStorage, globalz_set_table_gej};
use crate::field::Field;
use crate::scalar::Scalar;

pub const WINDOW_A: usize = 5;
pub const WINDOW_G: usize = 16;
pub const ECMULT_TABLE_SIZE_A: usize = 1 << (WINDOW_A - 2);
pub const ECMULT_TABLE_SIZE_G: usize = 1 << (WINDOW_G - 2);
pub const WNAF_BITS: usize = 256;

/// Context for accelerating the computation of a*P + b*G.
pub struct ECMultContext {
    pre_g: [AffineStorage; ECMULT_TABLE_SIZE_G],
}

/// Context for accelerating the computation of a*G.
pub struct ECMultGenContext {
    prec: [[AffineStorage; 16]; 64],
    blind: Scalar,
    initial: Jacobian,
}

/// A static ECMult context.
pub static ECMULT_CONTEXT: ECMultContext = ECMultContext {
    pre_g: include!("const.rs"),
};

/// A static ECMultGen context.
pub static ECMULT_GEN_CONTEXT: ECMultGenContext = ECMultGenContext {
    prec: include!("const_gen.rs"),
    blind: Scalar([2217680822, 850875797, 1046150361, 1330484644,
                   4015777837, 2466086288, 2052467175, 2084507480]),
    initial: Jacobian {
        x: field_const_raw!(586608, 43357028, 207667908, 262670128, 142222828, 38529388, 267186148, 45417712, 115291924, 13447464),
        y: field_const_raw!(12696548, 208302564, 112025180, 191752716, 143238548, 145482948, 228906000, 69755164, 243572800, 210897016),
        z: field_const_raw!(3685368, 75404844, 20246216, 5748944, 73206666, 107661790, 110806176, 73488774, 5707384, 104448710),
        infinity: false,
    }
};

pub fn odd_multiples_table(prej: &mut [Jacobian],
                       zr: &mut [Field],
                       a: &Jacobian) {
    debug_assert!(prej.len() == zr.len());
    debug_assert!(prej.len() > 0);
    debug_assert!(!a.is_infinity());

    let d = a.double_var(None);
    let d_ge = Affine {
        x: d.x.clone(),
        y: d.y.clone(),
        infinity: false,
    };

    let mut a_ge = Affine::default();
    a_ge.set_gej_zinv(a, &d.z);
    prej[0].x = a_ge.x;
    prej[0].y = a_ge.y;
    prej[0].z = a.z.clone();
    prej[0].infinity = false;

    zr[0] = d.z.clone();
    for i in 1..prej.len() {
        prej[i] = prej[i-1].add_ge_var(&d_ge, Some(&mut zr[i]));
    }

    let l = &prej.last().unwrap().z * &d.z;
    prej.last_mut().unwrap().z = l;
}

fn odd_multiples_table_globalz_windowa(pre: &mut [Affine; ECMULT_TABLE_SIZE_A],
                                       globalz: &mut Field,
                                       a: &Jacobian) {
    let mut prej: [Jacobian; ECMULT_TABLE_SIZE_A] = Default::default();
    let mut zr: [Field; ECMULT_TABLE_SIZE_A] = Default::default();

    odd_multiples_table(&mut prej, &mut zr, a);
    globalz_set_table_gej(pre, globalz, &prej, &zr);
}

fn table_get_ge(r: &mut Affine, pre: &[Affine], n: i32, w: usize) {
    debug_assert!(n & 1 == 1);
    debug_assert!(n >= -((1 << (w-1)) - 1));
    debug_assert!(n <=  ((1 << (w-1)) - 1));
    if n > 0 {
        *r = pre[((n-1)/2) as usize].clone();
    } else {
        *r = pre[((-n-1)/2) as usize].neg();
    }
}

fn table_get_ge_const(r: &mut Affine, pre: &[Affine], n: i32, w: usize) {
    let abs_n = n * (if n > 0 { 1 } else { 0 } * 2 - 1);
    let idx_n = abs_n / 2;
    debug_assert!(n & 1 == 1);
    debug_assert!(n >= -((1 << (w-1)) - 1));
    debug_assert!(n <=  ((1 << (w-1)) - 1));
    for m in 0..pre.len() {
        r.x.cmov(&pre[m].x, m == idx_n as usize);
        r.y.cmov(&pre[m].y, m == idx_n as usize);
    }
    r.infinity = false;
    let neg_y = r.y.neg(1);
    r.y.cmov(&neg_y, n != abs_n);
}

fn table_get_ge_storage(r: &mut Affine, pre: &[AffineStorage], n: i32, w: usize) {
    debug_assert!(n & 1 == 1);
    debug_assert!(n >= -((1 << (w-1)) - 1));
    debug_assert!(n <=  ((1 << (w-1)) - 1));
    if n > 0 {
        *r = pre[((n-1)/2) as usize].clone().into();
    } else {
        *r = pre[((-n-1)/2) as usize].clone().into();
        *r = r.neg();
    }
}

pub fn ecmult_wnaf(wnaf: &mut [i32], a: &Scalar, w: usize) -> i32 {
    let mut s = a.clone();
    let mut last_set_bit: i32 = -1;
    let mut bit = 0;
    let mut sign = 1;
    let mut carry = 0;

    debug_assert!(wnaf.len() <= 256);
    debug_assert!(w >= 2 && w <= 31);

    for i in 0..wnaf.len() {
        wnaf[i] = 0;
    }

    if s.bits(255, 1) > 0 {
        s = -s;
        sign = -1;
    }

    while bit < wnaf.len() {
        let mut now;
        let mut word;
        if s.bits(bit, 1) == carry as u32 {
            bit += 1;
            continue;
        }

        now = w;
        if now > wnaf.len() - bit {
            now = wnaf.len() - bit;
        }

        word = (s.bits_var(bit, now) as i32) + carry;

        carry = (word >> (w-1)) & 1;
        word -= carry << w;

        wnaf[bit] = sign * word;
        last_set_bit = bit as i32;

        bit += now;
    }
    debug_assert!(carry == 0);
    debug_assert!({
        let mut t = true;
        while bit < 256 {
            t = t && (s.bits(bit, 1) == 0);
            bit += 1;
        }
        t
    });
    last_set_bit + 1
}

pub fn ecmult_wnaf_const(wnaf: &mut [i32], a: &Scalar, w: usize) -> i32 {
    let mut s = a.clone();
    let mut word = 0;

    /* Note that we cannot handle even numbers by negating them to be
     * odd, as is done in other implementations, since if our scalars
     * were specified to have width < 256 for performance reasons,
     * their negations would have width 256 and we'd lose any
     * performance benefit. Instead, we use a technique from Section
     * 4.2 of the Okeya/Tagaki paper, which is to add either 1 (for
     * even) or 2 (for odd) to the number we are encoding, returning a
     * skew value indicating this, and having the caller compensate
     * after doing the multiplication. */

    /* Negative numbers will be negated to keep their bit
     * representation below the maximum width */
    let flip = s.is_high();
    /* We add 1 to even numbers, 2 to odd ones, noting that negation
     * flips parity */
    let bit = flip ^ !s.is_even();
    /* We add 1 to even numbers, 2 to odd ones, noting that negation
     * flips parity */
    let neg_s = -s.clone();
    let not_neg_one = !neg_s.is_one();
    s.cadd_bit(if bit { 1 } else { 0 }, not_neg_one);
    /* If we had negative one, flip == 1, s.d[0] == 0, bit == 1, so
     * caller expects that we added two to it and flipped it. In fact
     * for -1 these operations are identical. We only flipped, but
     * since skewing is required (in the sense that the skew must be 1
     * or 2, never zero) and flipping is not, we need to change our
     * flags to claim that we only skewed. */
    let mut global_sign = if flip { -1 } else { 1 };
    s.cond_neg_assign(Choice::from(flip as u8));
    global_sign *= if not_neg_one { 1 } else { 0 } * 2 - 1;
    let skew = 1 << (if bit { 1 } else { 0 });

    let mut u_last: i32 = s.shr_int(w) as i32;
    let mut u: i32 = 0;
    while word * w < WNAF_BITS {
        u = s.shr_int(w) as i32;
        let even = (u & 1) == 0;
        let sign = 2 * (if u_last > 0 { 1 } else { 0 }) - 1;
        u += sign * if even { 1 } else { 0 };
        u_last -= sign * if even { 1 } else { 0 } * (1 << w);

        wnaf[word] = (u_last as i32 * global_sign as i32) as i32;
        word += 1;

        u_last = u;
    }
    wnaf[word] = u * global_sign as i32;

    debug_assert!(s.is_zero());
    let wnaf_size = (WNAF_BITS + w - 1) / w;
    debug_assert!(word == wnaf_size);

    skew
}

impl ECMultContext {
    pub fn ecmult(
        &self, r: &mut Jacobian, a: &Jacobian, na: &Scalar, ng: &Scalar
    ) {
        let mut tmpa = Affine::default();
        let mut pre_a: [Affine; ECMULT_TABLE_SIZE_A] = Default::default();
        let mut z = Field::default();
        let mut wnaf_na = [0i32; 256];
        let mut wnaf_ng = [0i32; 256];
        let bits_na = ecmult_wnaf(&mut wnaf_na, na, WINDOW_A);
        let mut bits = bits_na;
        odd_multiples_table_globalz_windowa(&mut pre_a, &mut z, a);

        let bits_ng = ecmult_wnaf(&mut wnaf_ng, &ng, WINDOW_G);
        if bits_ng > bits {
            bits = bits_ng;
        }

        r.set_infinity();
        for i in (0..bits).rev() {
            let mut n;
            *r = r.double_var(None);

            n = wnaf_na[i as usize];
            if i < bits_na && n != 0 {
                table_get_ge(&mut tmpa, &pre_a, n, WINDOW_A);
                *r = r.add_ge_var(&tmpa, None);
            }
            n = wnaf_ng[i as usize];
            if i < bits_ng && n != 0 {
                table_get_ge_storage(&mut tmpa, &self.pre_g, n, WINDOW_G);
                *r = r.add_zinv_var(&tmpa, &z);
            }
        }

        if !r.is_infinity() {
            r.z *= &z;
        }
    }

    pub fn ecmult_const(
        &self, r: &mut Jacobian, a: &Affine, scalar: &Scalar
    ) {
        const WNAF_SIZE: usize = (WNAF_BITS + (WINDOW_A - 1) - 1) / (WINDOW_A - 1);

        let mut tmpa = Affine::default();
        let mut pre_a: [Affine; ECMULT_TABLE_SIZE_A] = Default::default();
        let mut z = Field::default();

        let mut wnaf_1 = [0i32; 1 + WNAF_SIZE];

        let sc = scalar.clone();
        let skew_1 = ecmult_wnaf_const(&mut wnaf_1, &sc, WINDOW_A - 1);

        /* Calculate odd multiples of a.  All multiples are brought to
         * the same Z 'denominator', which is stored in Z. Due to
         * secp256k1' isomorphism we can do all operations pretending
         * that the Z coordinate was 1, use affine addition formulae,
         * and correct the Z coordinate of the result once at the end.
         */
        r.set_ge(a);
        odd_multiples_table_globalz_windowa(&mut pre_a, &mut z, r);
        for i in 0..ECMULT_TABLE_SIZE_A {
            pre_a[i].y.normalize_weak();
        }

        /* first loop iteration (separated out so we can directly set
         * r, rather than having it start at infinity, get doubled
         * several times, then have its new value added to it) */
        let i = wnaf_1[WNAF_SIZE];
        debug_assert!(i != 0);
        table_get_ge_const(&mut tmpa, &pre_a, i, WINDOW_A);
        r.set_ge(&tmpa);

        /* remaining loop iterations */
        for i in (0..WNAF_SIZE).rev() {
            for _ in 0..(WINDOW_A - 1) {
                let r2 = r.clone();
                r.double_nonzero_in_place(&r2, None);
            }

            let n = wnaf_1[i];
            table_get_ge_const(&mut tmpa, &pre_a, n, WINDOW_A);
            debug_assert!(n != 0);
            *r = r.add_ge(&tmpa);
        }

        r.z *= &z;

        /* Correct for wNAF skew */
        let mut correction = a.clone();
        let mut correction_1_stor: AffineStorage;
        let a2_stor: AffineStorage;
        let mut tmpj = Jacobian::default();
        tmpj.set_ge(&correction);
        tmpj = tmpj.double_var(None);
        correction.set_gej(&tmpj);
        correction_1_stor = a.clone().into();
        a2_stor = correction.into();

        /* For odd numbers this is 2a (so replace it), for even ones a (so no-op) */
        correction_1_stor.cmov(&a2_stor, skew_1 == 2);

        /* Apply the correction */
        correction = correction_1_stor.into();
        correction = correction.neg();
        *r = r.add_ge(&correction)
    }
}

impl ECMultGenContext {
    pub fn ecmult_gen(
        &self, r: &mut Jacobian, gn: &Scalar
    ) {
        let mut adds = AffineStorage::default();
        *r = self.initial.clone();

        let mut gnb = gn + &self.blind;
        let mut add = Affine::default();
        add.infinity = false;

        for j in 0..64 {
            let mut bits = gnb.bits(j * 4, 4);
            for i in 0..16 {
                adds.cmov(&self.prec[j][i], i as u32 == bits);
            }
            add = adds.clone().into();
            *r = r.add_ge(&add);
            #[allow(unused_assignments)]
            {
                bits = 0;
            }
        }
        add.clear();
        gnb.clear();
    }
}