Files
addr2line
ahash
aho_corasick
arrayref
arrayvec
artemis_asset
artemis_core
artemis_erc20_app
artemis_eth_app
artemis_ethereum
backtrace
base58
bip39
bitmask
bitvec
blake2_rfc
block_buffer
block_padding
byte_slice_cast
byte_tools
byteorder
cfg_if
clear_on_drop
const_random
const_random_macro
constant_time_eq
crunchy
crypto_mac
curve25519_dalek
derive_more
digest
ed25519_dalek
either
environmental
ethabi_decode
ethbloom
ethereum_types
failure
failure_derive
fake_simd
fixed_hash
frame_metadata
frame_support
frame_support_procedural
frame_support_procedural_tools
frame_support_procedural_tools_derive
frame_system
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
generic_array
getrandom
gimli
hash256_std_hasher
hash_db
hashbrown
hex
hex_literal
hmac
hmac_drbg
impl_codec
impl_rlp
impl_serde
impl_trait_for_tuples
inflector
cases
camelcase
case
classcase
kebabcase
pascalcase
screamingsnakecase
sentencecase
snakecase
tablecase
titlecase
traincase
numbers
deordinalize
ordinalize
string
constants
deconstantize
demodulize
pluralize
singularize
suffix
foreignkey
integer_sqrt
itertools
keccak
lazy_static
libc
lock_api
log
memchr
memory_db
memory_units
merlin
nodrop
num_bigint
num_cpus
num_integer
num_rational
num_traits
object
once_cell
opaque_debug
pallet_bridge
pallet_verifier
parity_scale_codec
parity_scale_codec_derive
parity_util_mem
parity_util_mem_derive
parity_wasm
parking_lot
parking_lot_core
paste
paste_impl
pbkdf2
pin_project
pin_project_internal
pin_utils
ppv_lite86
primitive_types
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
radium
rand
rand_chacha
rand_core
rand_pcg
ref_cast
ref_cast_impl
regex
regex_syntax
rental
rental_impl
rlp
rustc_demangle
rustc_hash
rustc_hex
schnorrkel
scopeguard
secp256k1
serde
serde_derive
sha2
slab
smallvec
sp_application_crypto
sp_arithmetic
sp_core
sp_debug_derive
sp_externalities
sp_inherents
sp_io
sp_panic_handler
sp_runtime
sp_runtime_interface
sp_runtime_interface_proc_macro
sp_state_machine
sp_std
sp_storage
sp_tracing
sp_trie
sp_version
sp_wasm_interface
stable_deref_trait
static_assertions
substrate_bip39
subtle
syn
synstructure
thread_local
tiny_keccak
toml
tracing
tracing_attributes
tracing_core
trie_db
trie_root
twox_hash
typenum
uint
unicode_normalization
unicode_xid
wasmi
wasmi_validation
zeroize
zeroize_derive
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
//! Abstractions for asynchronous programming.
//!
//! This crate provides a number of core abstractions for writing asynchronous
//! code:
//!
//! - [Futures](crate::future::Future) are single eventual values produced by
//!   asynchronous computations. Some programming languages (e.g. JavaScript)
//!   call this concept "promise".
//! - [Streams](crate::stream::Stream) represent a series of values
//!   produced asynchronously.
//! - [Sinks](crate::sink::Sink) provide support for asynchronous writing of
//!   data.
//! - [Executors](crate::executor) are responsible for running asynchronous
//!   tasks.
//!
//! The crate also contains abstractions for [asynchronous I/O](crate::io) and
//! [cross-task communication](crate::channel).
//!
//! Underlying all of this is the *task system*, which is a form of lightweight
//! threading. Large asynchronous computations are built up using futures,
//! streams and sinks, and then spawned as independent tasks that are run to
//! completion, but *do not block* the thread running them.
//!
//! The following example describes how the task system context is built and used
//! within macros and keywords such as async and await!.
//!
//! ```rust
//! # use futures::channel::mpsc;
//! # use futures::executor; ///standard executors to provide a context for futures and streams
//! # use futures::executor::ThreadPool;
//! # use futures::StreamExt;
//!
//! fn main() {
//!     let pool = ThreadPool::new().expect("Failed to build pool");
//!     let (tx, rx) = mpsc::unbounded::<i32>();
//!
//!     // Create a future by an async block, where async is responsible for an
//!     // implementation of Future. At this point no executor has been provided
//!     // to this future, so it will not be running.
//!     let fut_values = async {
//!         // Create another async block, again where the Future implementation
//!         // is generated by async. Since this is inside of a parent async block,
//!         // it will be provided with the executor of the parent block when the parent
//!         // block is executed.
//!         //
//!         // This executor chaining is done by Future::poll whose second argument
//!         // is a std::task::Context. This represents our executor, and the Future
//!         // implemented by this async block can be polled using the parent async
//!         // block's executor.
//!         let fut_tx_result = async move {
//!             (0..100).for_each(|v| {
//!                 tx.unbounded_send(v).expect("Failed to send");
//!             })
//!         };
//!
//!         // Use the provided thread pool to spawn the generated future
//!         // responsible for transmission
//!         pool.spawn_ok(fut_tx_result);
//!
//!         let fut_values = rx
//!             .map(|v| v * 2)
//!             .collect();
//!
//!         // Use the executor provided to this async block to wait for the
//!         // future to complete.
//!         fut_values.await
//!     };
//!
//!     // Actually execute the above future, which will invoke Future::poll and
//!     // subsequenty chain appropriate Future::poll and methods needing executors
//!     // to drive all futures. Eventually fut_values will be driven to completion.
//!     let values: Vec<i32> = executor::block_on(fut_values);
//!
//!     println!("Values={:?}", values);
//! }
//! ```
//!
//! The majority of examples and code snippets in this crate assume that they are
//! inside an async block as written above.

#![cfg_attr(feature = "cfg-target-has-atomic", feature(cfg_target_has_atomic))]
#![cfg_attr(feature = "read-initializer", feature(read_initializer))]

#![cfg_attr(not(feature = "std"), no_std)]

#![warn(missing_docs, missing_debug_implementations, rust_2018_idioms, unreachable_pub)]
// It cannot be included in the published code because this lints have false positives in the minimum required version.
#![cfg_attr(test, warn(single_use_lifetimes))]
#![warn(clippy::all)]

#![doc(test(attr(deny(warnings), allow(dead_code, unused_assignments, unused_variables))))]

#![doc(html_root_url = "https://docs.rs/futures/0.3.5")]

#[cfg(all(feature = "cfg-target-has-atomic", not(feature = "unstable")))]
compile_error!("The `cfg-target-has-atomic` feature requires the `unstable` feature as an explicit opt-in to unstable features");

#[cfg(all(feature = "bilock", not(feature = "unstable")))]
compile_error!("The `bilock` feature requires the `unstable` feature as an explicit opt-in to unstable features");

#[cfg(all(feature = "read-initializer", not(feature = "unstable")))]
compile_error!("The `read-initializer` feature requires the `unstable` feature as an explicit opt-in to unstable features");

#[doc(hidden)] pub use futures_core::future::{Future, TryFuture};
#[doc(hidden)] pub use futures_util::future::{FutureExt, TryFutureExt};

#[doc(hidden)] pub use futures_core::stream::{Stream, TryStream};
#[doc(hidden)] pub use futures_util::stream::{StreamExt, TryStreamExt};

#[doc(hidden)] pub use futures_sink::Sink;
#[doc(hidden)] pub use futures_util::sink::SinkExt;

#[cfg(feature = "std")]
#[doc(hidden)] pub use futures_io::{AsyncRead, AsyncWrite, AsyncSeek, AsyncBufRead};
#[cfg(feature = "std")]
#[doc(hidden)] pub use futures_util::{AsyncReadExt, AsyncWriteExt, AsyncSeekExt, AsyncBufReadExt};

// Macro reexports
pub use futures_core::ready; // Readiness propagation
pub use futures_util::pin_mut;
#[cfg(feature = "async-await")]
pub use futures_util::{pending, poll, join, try_join, select_biased}; // Async-await
#[cfg(feature = "std")]
#[cfg(feature = "async-await")]
pub use futures_util::select;

#[cfg_attr(feature = "cfg-target-has-atomic", cfg(target_has_atomic = "ptr"))]
#[cfg(feature = "alloc")]
pub mod channel {
    //! Cross-task communication.
    //!
    //! Like threads, concurrent tasks sometimes need to communicate with each
    //! other. This module contains two basic abstractions for doing so:
    //!
    //! - [oneshot](crate::channel::oneshot), a way of sending a single value
    //!   from one task to another.
    //! - [mpsc](crate::channel::mpsc), a multi-producer, single-consumer
    //!   channel for sending values between tasks, analogous to the
    //!   similarly-named structure in the standard library.
    //!
    //! This module is only available when the `std` or `alloc` feature of this
    //! library is activated, and it is activated by default.

    pub use futures_channel::oneshot;

    #[cfg(feature = "std")]
    pub use futures_channel::mpsc;
}

#[cfg(feature = "compat")]
pub mod compat {
    //! Interop between `futures` 0.1 and 0.3.
    //!
    //! This module is only available when the `compat` feature of this
    //! library is activated.

    pub use futures_util::compat::{
        Compat,
        CompatSink,
        Compat01As03,
        Compat01As03Sink,
        Executor01Future,
        Executor01As03,
        Executor01CompatExt,
        Future01CompatExt,
        Stream01CompatExt,
        Sink01CompatExt,
    };

    #[cfg(feature = "io-compat")]
    pub use futures_util::compat::{
        AsyncRead01CompatExt,
        AsyncWrite01CompatExt,
    };
}

#[cfg(feature = "executor")]
pub mod executor {
    //! Task execution.
    //!
    //! All asynchronous computation occurs within an executor, which is
    //! capable of spawning futures as tasks. This module provides several
    //! built-in executors, as well as tools for building your own.
    //!
    //! This module is only available when the `executor` feature of this
    //! library is activated, and it is activated by default.
    //!
    //! # Using a thread pool (M:N task scheduling)
    //!
    //! Most of the time tasks should be executed on a [thread
    //! pool](crate::executor::ThreadPool). A small set of worker threads can
    //! handle a very large set of spawned tasks (which are much lighter weight
    //! than threads). Tasks spawned onto the pool with the
    //! [`spawn_ok()`](crate::executor::ThreadPool::spawn_ok)
    //! function will run ambiently on the created threads.
    //!
    //! # Spawning additional tasks
    //!
    //! Tasks can be spawned onto a spawner by calling its
    //! [`spawn_obj`](crate::task::Spawn::spawn_obj) method directly.
    //! In the case of `!Send` futures,
    //! [`spawn_local_obj`](crate::task::LocalSpawn::spawn_local_obj)
    //! can be used instead.
    //!
    //! # Single-threaded execution
    //!
    //! In addition to thread pools, it's possible to run a task (and the tasks
    //! it spawns) entirely within a single thread via the
    //! [`LocalPool`](crate::executor::LocalPool) executor. Aside from cutting
    //! down on synchronization costs, this executor also makes it possible to
    //! spawn non-`Send` tasks, via
    //! [`spawn_local_obj`](crate::task::LocalSpawn::spawn_local_obj).
    //! The `LocalPool` is best suited for running I/O-bound tasks that do
    //! relatively little work between I/O operations.
    //!
    //! There is also a convenience function
    //! [`block_on`](crate::executor::block_on) for simply running a future to
    //! completion on the current thread.

    pub use futures_executor::{
        BlockingStream,
        Enter, EnterError,
        LocalSpawner, LocalPool,
        block_on, block_on_stream, enter,
    };

    #[cfg(feature = "thread-pool")]
    pub use futures_executor::{ThreadPool, ThreadPoolBuilder};
}

pub mod future {
    //! Asynchronous values.
    //!
    //! This module contains:
    //!
    //! - The [`Future` trait](crate::future::Future).
    //! - The [`FutureExt`](crate::future::FutureExt) trait, which provides
    //!   adapters for chaining and composing futures.
    //! - Top-level future combinators like [`lazy`](crate::future::lazy) which
    //!   creates a future from a closure that defines its return value, and
    //!   [`ready`](crate::future::ready), which constructs a future with an
    //!   immediate defined value.

    pub use futures_core::future::{
        Future, TryFuture, FusedFuture,
    };

    #[cfg(feature = "alloc")]
    pub use futures_core::future::{BoxFuture, LocalBoxFuture};

    pub use futures_task::{FutureObj, LocalFutureObj, UnsafeFutureObj};

    pub use futures_util::future::{
        lazy, Lazy,
        maybe_done, MaybeDone,
        pending, Pending,
        poll_fn, PollFn,
        ready, ok, err, Ready,
        join, join3, join4, join5,
        Join, Join3, Join4, Join5,
        select, Select,
        try_join, try_join3, try_join4, try_join5,
        TryJoin, TryJoin3, TryJoin4, TryJoin5,
        try_select, TrySelect,
        Either,
        OptionFuture,

        FutureExt,
        FlattenStream, Flatten, Fuse, Inspect, IntoStream, Map, Then, UnitError,
        NeverError,

        TryFutureExt,
        AndThen, ErrInto, FlattenSink, IntoFuture, MapErr, MapOk, OrElse,
        InspectOk, InspectErr, TryFlattenStream, UnwrapOrElse,
    };

    #[cfg(feature = "alloc")]
    pub use futures_util::future::{
        join_all, JoinAll,
        select_all, SelectAll,
        try_join_all, TryJoinAll,
        select_ok, SelectOk,
    };

    #[cfg_attr(feature = "cfg-target-has-atomic", cfg(target_has_atomic = "ptr"))]
    #[cfg(feature = "alloc")]
    pub use futures_util::future::{
        abortable, Abortable, AbortHandle, AbortRegistration, Aborted,
    };

    #[cfg(feature = "std")]
    pub use futures_util::future::{
        Remote, RemoteHandle,
        CatchUnwind, Shared,
    };
}

#[cfg(feature = "std")]
pub mod io {
    //! Asynchronous I/O.
    //!
    //! This module is the asynchronous version of `std::io`. It defines four
    //! traits, [`AsyncRead`](crate::io::AsyncRead),
    //! [`AsyncWrite`](crate::io::AsyncWrite),
    //! [`AsyncSeek`](crate::io::AsyncSeek), and
    //! [`AsyncBufRead`](crate::io::AsyncBufRead), which mirror the `Read`,
    //! `Write`, `Seek`, and `BufRead` traits of the standard library. However,
    //! these traits integrate
    //! with the asynchronous task system, so that if an I/O object isn't ready
    //! for reading (or writing), the thread is not blocked, and instead the
    //! current task is queued to be woken when I/O is ready.
    //!
    //! In addition, the [`AsyncReadExt`](crate::io::AsyncReadExt),
    //! [`AsyncWriteExt`](crate::io::AsyncWriteExt),
    //! [`AsyncSeekExt`](crate::io::AsyncSeekExt), and
    //! [`AsyncBufReadExt`](crate::io::AsyncBufReadExt) extension traits offer a
    //! variety of useful combinators for operating with asynchronous I/O
    //! objects, including ways to work with them using futures, streams and
    //! sinks.
    //!
    //! This module is only available when the `std` feature of this
    //! library is activated, and it is activated by default.

    pub use futures_io::{
        AsyncRead, AsyncWrite, AsyncSeek, AsyncBufRead, Error, ErrorKind,
        IoSlice, IoSliceMut, Result, SeekFrom,
    };

    #[cfg(feature = "read-initializer")]
    pub use futures_io::Initializer;

    pub use futures_util::io::{
        AsyncReadExt, AsyncWriteExt, AsyncSeekExt, AsyncBufReadExt, AllowStdIo,
        BufReader, BufWriter, Cursor, Chain, Close, copy, Copy, copy_buf, CopyBuf,
        empty, Empty, Flush, IntoSink, Lines, Read, ReadExact, ReadHalf,
        ReadLine, ReadToEnd, ReadToString, ReadUntil, ReadVectored, repeat,
        Repeat, ReuniteError, Seek, sink, Sink, Take, Window, Write, WriteAll, WriteHalf,
        WriteVectored,
    };
}

#[cfg_attr(feature = "cfg-target-has-atomic", cfg(target_has_atomic = "ptr"))]
#[cfg(feature = "alloc")]
pub mod lock {
    //! Futures-powered synchronization primitives.
    //!
    //! This module is only available when the `std` or `alloc` feature of this
    //! library is activated, and it is activated by default.

    #[cfg(feature = "bilock")]
    pub use futures_util::lock::{BiLock, BiLockAcquire, BiLockGuard, ReuniteError};

    #[cfg(feature = "std")]
    pub use futures_util::lock::{MappedMutexGuard, Mutex, MutexLockFuture, MutexGuard};
}

pub mod prelude {
    //! A "prelude" for crates using the `futures` crate.
    //!
    //! This prelude is similar to the standard library's prelude in that you'll
    //! almost always want to import its entire contents, but unlike the
    //! standard library's prelude you'll have to do so manually:
    //!
    //! ```
    //! # #[allow(unused_imports)]
    //! use futures::prelude::*;
    //! ```
    //!
    //! The prelude may grow over time as additional items see ubiquitous use.

    pub use crate::future::{self, Future, TryFuture};
    pub use crate::stream::{self, Stream, TryStream};
    pub use crate::sink::{self, Sink};

    #[doc(no_inline)]
    pub use crate::future::{FutureExt as _, TryFutureExt as _};
    #[doc(no_inline)]
    pub use crate::stream::{StreamExt as _, TryStreamExt as _};
    #[doc(no_inline)]
    pub use crate::sink::SinkExt as _;

    #[cfg(feature = "std")]
    pub use crate::io::{
        AsyncRead, AsyncWrite, AsyncSeek, AsyncBufRead,
    };

    #[cfg(feature = "std")]
    #[doc(no_inline)]
    pub use crate::io::{
        AsyncReadExt as _, AsyncWriteExt as _, AsyncSeekExt as _, AsyncBufReadExt as _,
    };
}

pub mod sink {
    //! Asynchronous sinks.
    //!
    //! This module contains:
    //!
    //! - The [`Sink` trait](crate::sink::Sink), which allows you to
    //!   asynchronously write data.
    //! - The [`SinkExt`](crate::sink::SinkExt) trait, which provides adapters
    //!   for chaining and composing sinks.

    pub use futures_sink::Sink;

    pub use futures_util::sink::{
        Close, Flush, Send, SendAll, SinkErrInto, SinkMapErr, With,
        SinkExt, Fanout, Drain, drain,
        WithFlatMap,
    };

    #[cfg(feature = "alloc")]
    pub use futures_util::sink::Buffer;
}

pub mod stream {
    //! Asynchronous streams.
    //!
    //! This module contains:
    //!
    //! - The [`Stream` trait](crate::stream::Stream), for objects that can
    //!   asynchronously produce a sequence of values.
    //! - The [`StreamExt`](crate::stream::StreamExt) trait, which provides
    //!   adapters for chaining and composing streams.
    //! - Top-level stream contructors like [`iter`](crate::stream::iter)
    //!   which creates a stream from an iterator.

    pub use futures_core::stream::{
        Stream, TryStream, FusedStream,
    };

    #[cfg(feature = "alloc")]
    pub use futures_core::stream::{BoxStream, LocalBoxStream};

    pub use futures_util::stream::{
        iter, Iter,
        repeat, Repeat,
        empty, Empty,
        pending, Pending,
        once, Once,
        poll_fn, PollFn,
        select, Select,
        unfold, Unfold,
        try_unfold, TryUnfold,

        StreamExt,
        Chain, Collect, Concat, Enumerate, Filter, FilterMap, FlatMap, Flatten,
        Fold, Forward, ForEach, Fuse, StreamFuture, Inspect, Map, Next,
        SelectNextSome, Peek, Peekable, Scan, Skip, SkipWhile, Take, TakeWhile,
        Then, Zip,

        TryStreamExt,
        AndThen, ErrInto, MapOk, MapErr, OrElse,
        InspectOk, InspectErr,
        TryNext, TryForEach, TryFilter, TryFilterMap, TryFlatten,
        TryCollect, TryConcat, TryFold, TrySkipWhile,
        IntoStream,
    };

    #[cfg(feature = "alloc")]
    pub use futures_util::stream::{
        // For StreamExt:
        Chunks, ReadyChunks,
    };

    #[cfg_attr(feature = "cfg-target-has-atomic", cfg(target_has_atomic = "ptr"))]
    #[cfg(feature = "alloc")]
    pub use futures_util::stream::{
        FuturesOrdered,
        futures_unordered, FuturesUnordered,

        // For StreamExt:
        BufferUnordered, Buffered, ForEachConcurrent, SplitStream, SplitSink,
        ReuniteError,

        select_all, SelectAll,
    };

    #[cfg(feature = "std")]
    pub use futures_util::stream::{
        // For StreamExt:
        CatchUnwind,
    };

    #[cfg_attr(feature = "cfg-target-has-atomic", cfg(target_has_atomic = "ptr"))]
    #[cfg(feature = "alloc")]
    pub use futures_util::stream::{
        // For TryStreamExt:
        TryBufferUnordered, TryForEachConcurrent,
    };

    #[cfg(feature = "std")]
    pub use futures_util::stream::IntoAsyncRead;
}

pub mod task {
    //! Tools for working with tasks.
    //!
    //! This module contains:
    //!
    //! - [`Spawn`](crate::task::Spawn), a trait for spawning new tasks.
    //! - [`Context`](crate::task::Context), a context of an asynchronous task,
    //!   including a handle for waking up the task.
    //! - [`Waker`](crate::task::Waker), a handle for waking up a task.
    //!
    //! The remaining types and traits in the module are used for implementing
    //! executors or dealing with synchronization issues around task wakeup.

    pub use futures_core::task::{Context, Poll, Waker, RawWaker, RawWakerVTable};

    pub use futures_task::{
        Spawn, LocalSpawn, SpawnError,
        FutureObj, LocalFutureObj, UnsafeFutureObj,
    };

    pub use futures_util::task::noop_waker;

    #[cfg(feature = "std")]
    pub use futures_util::task::noop_waker_ref;

    #[cfg(feature = "alloc")]
    pub use futures_util::task::{SpawnExt, LocalSpawnExt};

    #[cfg_attr(feature = "cfg-target-has-atomic", cfg(target_has_atomic = "ptr"))]
    #[cfg(feature = "alloc")]
    pub use futures_util::task::{waker, waker_ref, WakerRef, ArcWake};

    #[cfg_attr(feature = "cfg-target-has-atomic", cfg(target_has_atomic = "ptr"))]
    pub use futures_util::task::AtomicWaker;
}

pub mod never {
    //! This module contains the `Never` type.
    //!
    //! Values of this type can never be created and will never exist.

    pub use futures_util::never::Never;
}