Files
addr2line
ahash
aho_corasick
arrayref
arrayvec
artemis_asset
artemis_core
artemis_erc20_app
artemis_eth_app
artemis_ethereum
backtrace
base58
bip39
bitmask
bitvec
blake2_rfc
block_buffer
block_padding
byte_slice_cast
byte_tools
byteorder
cfg_if
clear_on_drop
const_random
const_random_macro
constant_time_eq
crunchy
crypto_mac
curve25519_dalek
derive_more
digest
ed25519_dalek
either
environmental
ethabi_decode
ethbloom
ethereum_types
failure
failure_derive
fake_simd
fixed_hash
frame_metadata
frame_support
frame_support_procedural
frame_support_procedural_tools
frame_support_procedural_tools_derive
frame_system
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
generic_array
getrandom
gimli
hash256_std_hasher
hash_db
hashbrown
hex
hex_literal
hmac
hmac_drbg
impl_codec
impl_rlp
impl_serde
impl_trait_for_tuples
inflector
cases
camelcase
case
classcase
kebabcase
pascalcase
screamingsnakecase
sentencecase
snakecase
tablecase
titlecase
traincase
numbers
deordinalize
ordinalize
string
constants
deconstantize
demodulize
pluralize
singularize
suffix
foreignkey
integer_sqrt
itertools
keccak
lazy_static
libc
lock_api
log
memchr
memory_db
memory_units
merlin
nodrop
num_bigint
num_cpus
num_integer
num_rational
num_traits
object
once_cell
opaque_debug
pallet_bridge
pallet_verifier
parity_scale_codec
parity_scale_codec_derive
parity_util_mem
parity_util_mem_derive
parity_wasm
parking_lot
parking_lot_core
paste
paste_impl
pbkdf2
pin_project
pin_project_internal
pin_utils
ppv_lite86
primitive_types
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
radium
rand
rand_chacha
rand_core
rand_pcg
ref_cast
ref_cast_impl
regex
regex_syntax
rental
rental_impl
rlp
rustc_demangle
rustc_hash
rustc_hex
schnorrkel
scopeguard
secp256k1
serde
serde_derive
sha2
slab
smallvec
sp_application_crypto
sp_arithmetic
sp_core
sp_debug_derive
sp_externalities
sp_inherents
sp_io
sp_panic_handler
sp_runtime
sp_runtime_interface
sp_runtime_interface_proc_macro
sp_state_machine
sp_std
sp_storage
sp_tracing
sp_trie
sp_version
sp_wasm_interface
stable_deref_trait
static_assertions
substrate_bip39
subtle
syn
synstructure
thread_local
tiny_keccak
toml
tracing
tracing_attributes
tracing_core
trie_db
trie_root
twox_hash
typenum
uint
unicode_normalization
unicode_xid
wasmi
wasmi_validation
zeroize
zeroize_derive
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
// -*- mode: rust; -*-
//
// This file is part of schnorrkel.
// Copyright (c) 2019 Web 3 Foundation
// See LICENSE for licensing information.
//
// Authors:
// - jeffrey Burdges <jeff@web3.foundation>

//! Implementation for Ristretto Schnorr signatures of
//! "Simple Schnorr Multi-Signatures with Applications to Bitcoin" by
//! Gregory Maxwell, Andrew Poelstra, Yannick Seurin, and Pieter Wuille
//! https://eprint.iacr.org/2018/068
//!
//! We observe the security arguments from the
//! [original 2-round version](https://eprint.iacr.org/2018/068/20180118:124757)
//! were found lacking in
//! "On the Provable Security of Two-Round Multi-Signatures" by
//! Manu Drijvers, Kasra Edalatnejad, Bryan Ford, and Gregory Neven
//! https://eprint.iacr.org/2018/417
//! ([slides](https://rwc.iacr.org/2019/slides/neven.pdf))
//! so we implement only the
//! [3-round version](https://eprint.iacr.org/2018/068/20180520:191909).
//!
//! Appendix A of the [MuSig paper](https://eprint.iacr.org/2018/068)
//! discusses Interactive Aggregate Signatures (IAS) in which cosigners'
//! messages differ.  Appendix A.3 gives a secure scheme that correctly
//! binds signers to their messages.  See
//! https://github.com/w3f/schnorrkel/issues/5#issuecomment-477912319

// See also https://github.com/lovesh/signature-schemes/issues/2


use core::borrow::{Borrow};  // BorrowMut

#[cfg(feature = "alloc")]
use alloc::{collections::btree_map::{BTreeMap, Entry}};
#[cfg(feature = "std")]
use std::{collections::btree_map::{BTreeMap, Entry}};

use arrayvec::ArrayVec;

use merlin::Transcript;

use curve25519_dalek::constants;
use curve25519_dalek::ristretto::{CompressedRistretto,RistrettoPoint};
use curve25519_dalek::scalar::Scalar;

use super::*;
use crate::context::SigningTranscript;
use crate::errors::MultiSignatureStage;


/// Rewinding immunity count plus one
///
/// At least two so that our 2-round escape hatch `add_trusted`
/// provides some protection against the Wagner's k-sum attacks on
/// 2-round multi-signatures.
const REWINDS: usize = 4;


// === Agagregate public keys for multi-signatures === //

/// Compute a transcript from which we may compute public key weightings.
///
/// Incorrect weightings shall occur if the iterator provided does not
/// run in the same sorted ordering as `BTreeMap::iter`/`keys`/etc.
/// We avoided a context: &'static [u8] here and in callers becuase they
/// seem irreevant to the security arguments in the MuSig paper.
#[inline(always)]
fn commit_public_keys<'a,I>(keys: I) -> Transcript
where I: Iterator<Item=&'a PublicKey>
{
    let mut t = Transcript::new(b"MuSig-aggregate-public_key");
    for pk in keys {
        t.commit_point(b"pk-set", pk.as_compressed() );
    }
    t
}

/// Computes the weighting from the transcript returnned by
/// `commit_public_keys` and a public key.
///
/// We cannot verify that the public key was ever entered into the
/// transcript, so user facing callers should check this.
fn compute_weighting(mut t: Transcript, pk: &PublicKey) -> Scalar {
    t.commit_point(b"pk-choice", pk.as_compressed() );
    t.challenge_scalar(b"")
}

/// Any data structure used for aggregating public keys.
///
/// Internally, these must usually iterate over the public keys being
/// aggregated in lexicographic order, so any `BTreeMap<PublicKey,V>`
/// works.  Alternative designs sound plausible when working with some
/// blockchain scheme.
pub trait AggregatePublicKey {
    /// Return delinearization weighting for one of many public keys being aggregated.
    fn weighting(&self, choice: &PublicKey) -> Option<Scalar>;

    /// Returns aggregated public key.
    fn public_key(&self) -> PublicKey;
}

impl<K,V> AggregatePublicKey for BTreeMap<K,V>
where K: Borrow<PublicKey>+Ord
{
    fn weighting(&self, choice: &PublicKey) -> Option<Scalar> {
        if ! self.contains_key(choice) {  return None;  }
        let t0 = commit_public_keys( self.keys().map(|pk| pk.borrow()) );
        Some(compute_weighting(t0, choice))
    }

    fn public_key(&self) -> PublicKey {
        let t0 = commit_public_keys( self.keys().map(|pk| pk.borrow()) );
        let point = self.keys().map(|pk| {
            let pk = pk.borrow();
            compute_weighting(t0.clone(), pk) * pk.as_point()
        }).sum();
        PublicKey::from_point(point)
    }
}

/// Aggregation helper for public keys kept in slices
pub struct AggregatePublicKeySlice<'a,K>(&'a [K])
where K: Borrow<PublicKey>;

/// Aggregate public keys stored in a mutable slice
pub fn aggregate_public_key_from_slice<'a>(public_keys: &'a mut [PublicKey])
 -> Option<AggregatePublicKeySlice<'a,PublicKey>>
{
    if public_keys.len() == 1 { return None; }
    public_keys.sort_unstable();
    if public_keys.windows(2).any(|x| x[0]==x[1]) { return None; }
    Some(AggregatePublicKeySlice(public_keys))
}

/// Aggregate public keys stored in a mutable slice
pub fn aggregate_public_key_from_refs_slice<'a>(public_keys: &'a mut [&'a PublicKey])
 -> Option<AggregatePublicKeySlice<'a,&'a PublicKey>>
{
    if public_keys.len() == 1 { return None; }
    public_keys.sort_unstable();
    if public_keys.windows(2).any(|x| x[0]==x[1]) { return None; }
    Some(AggregatePublicKeySlice(public_keys))
}

/// Aggregate public keys stored in a sorted slice
pub fn aggregate_public_key_from_sorted_slice<'a,K>(public_keys: &'a mut [K])
 -> Option<AggregatePublicKeySlice<'a,K>>
where K: Borrow<PublicKey>+PartialOrd<K>
{
    if public_keys.len() == 1 { return None; }
    if public_keys.windows(2).any(|x| x[0] >= x[1]) { return None; }
    Some(AggregatePublicKeySlice(public_keys))
}

impl<'a,K> AggregatePublicKey for AggregatePublicKeySlice<'a,K>
where K: Borrow<PublicKey>+PartialEq<K>
{
    fn weighting(&self, choice: &PublicKey) -> Option<Scalar> {
        if self.0.iter().any(|pk| pk.borrow() == choice) {  return None;  }
        let t0 = commit_public_keys( self.0.iter().map(|pk| pk.borrow()) );
        Some(compute_weighting(t0, choice))
    }

    fn public_key(&self) -> PublicKey {
        let t0 = commit_public_keys( self.0.iter().map(|pk| pk.borrow()) );
        let point = self.0.iter().map(|pk| {
            let pk = pk.borrow();
            compute_weighting(t0.clone(), pk) * pk.as_point()
        } ).sum();
        PublicKey::from_point(point)
    }
}


// === Multi-signature protocol === //

const COMMITMENT_SIZE : usize = 16;

/// Commitments to `R_i` values shared between cosigners during signing
#[derive(Debug,Clone,Copy,PartialEq,Eq)]
pub struct Commitment(pub [u8; COMMITMENT_SIZE]);

impl Commitment {
    #[allow(non_snake_case)]
    fn for_R<I>(R: I) -> Commitment
    where I: IntoIterator<Item=CompressedRistretto>
    {
        let mut t = Transcript::new(b"MuSig-commitment");
        for R0 in R.into_iter() { t.commit_point(b"sign:R",&R0); }
        let mut commit = [0u8; COMMITMENT_SIZE];
        t.challenge_bytes(b"commitment",&mut commit[..]);
        Commitment(commit)
    }
}
// TODO: serde_boilerplate!(Commitment);

// TODO: serde_boilerplate!(Commitment);


/// Internal representation of revealed points 
#[derive(Debug,Clone,PartialEq,Eq)]
struct RevealedPoints([RistrettoPoint; REWINDS]);

impl RevealedPoints {
    /*
    #[allow(non_snake_case)]
    fn to_commitment(&self) -> Commitment {
        // self.check_length() ?;
        Commitment::for_R( self.0.iter().map(|R| R.compress()) )
    }
    */

    fn to_reveal(&self) -> Reveal {
        // self.check_length() ?;
        let mut reveal = [0u8; 32*REWINDS];
        for (o,i) in reveal.chunks_mut(32).zip(&self.0) {
            o.copy_from_slice(i.compress().as_bytes()); 
        }
        Reveal(reveal)
    }
}

/// Revealed `R_i` values shared between cosigners during signing
// #[derive(Debug,Clone,PartialEq,Eq)]
pub struct Reveal(pub [u8; 32*REWINDS]);
// TODO: serde_boilerplate!(Reveal);

impl Clone for Reveal {
    fn clone(&self) -> Reveal { Reveal(self.0.clone()) }
}
impl PartialEq<Reveal> for Reveal {
    #[inline]
    fn eq(&self, other: &Reveal) -> bool {
        self.0[..] == other.0[..]
    }
    #[inline]
    fn ne(&self, other: &Reveal) -> bool {
        self.0[..] != other.0[..]
    }
}
impl Eq for Reveal { }

impl Reveal {
    fn check_length(&self) -> SignatureResult<()> {
        if self.0.len() % 32 == 0 { Ok(()) } else { Err(SignatureError::PointDecompressionError) }
    }

    #[allow(non_snake_case)]
    fn iter_points<'a>(&'a self) -> impl Iterator<Item=CompressedRistretto> + 'a {
        (&self.0).chunks(32).map( |R| CompressedRistretto( array_ref![R,0,32].clone() ) )
    }

    fn to_commitment(&self) -> SignatureResult<Commitment> {
        self.check_length() ?;
        Ok(Commitment::for_R( self.iter_points() )) 
    }

    fn into_points(&self) -> SignatureResult<RevealedPoints> {
        self.check_length() ?;
        let a = self.iter_points().map(
            |x| x.decompress().ok_or(SignatureError::PointDecompressionError)
        ).collect::<SignatureResult<ArrayVec<[RistrettoPoint; REWINDS]>>>() ?;
        Ok( RevealedPoints( a.into_inner().unwrap() ) )
    }
}


#[allow(non_snake_case)]
#[derive(Debug,Clone,PartialEq,Eq)]
enum CoR {
    Commit(Commitment),       // H(R_i)
    Reveal(RevealedPoints),   // R_i
    Cosigned { s: Scalar },   // s_i extracted from Cosignature type
    Collect { reveal: RevealedPoints, s: Scalar },
}

impl CoR {
    /*
    #[allow(non_snake_case)]
    fn get_reveal(&self) -> Option<&Reveal> {
        match self {
            CoR::Commit(_) => None,
            CoR::Reveal(R) => Some(R),
            CoR::Cosigned { .. } => None,  // panic! ???
            CoR::Collect { reveal, .. } => Some(reveal),
        }
    }

    fn get_s(&self) -> Option<&RistrettoPoint> {
        match self {
            CoR::Commit(_) => None,
            CoR::Reveal(_) => None,
            CoR::Cosigned { s } => Some(s),
            CoR::Collect { s, .. } => Some(s),
        }
    }
    */

    fn set_revealed(&mut self, reveal: Reveal) -> SignatureResult<()> {
        let commitment = reveal.to_commitment() ?;
        let reveal = reveal.into_points() ?;
        match self.clone() {  // TODO: Remove .clone() here with #![feature(nll)]
            CoR::Collect { .. } => panic!("Internal error, set_reveal during collection phase."),
            CoR::Cosigned { .. } => panic!("Internal error, cosigning during reveal phase."),
            CoR::Commit(c_old) =>
                if c_old==commitment {  // TODO: Restore *c_old here with #![feature(nll)]
                    *self = CoR::Reveal(reveal);
                    Ok(())
                } else {
                    let musig_stage = MultiSignatureStage::Commitment;
                    Err(SignatureError::MuSigInconsistent { musig_stage, duplicate: false, })
                },
            CoR::Reveal(reveal_old) =>
                if reveal_old == reveal { Ok(()) } else {  // TODO: Restore *R_old here with #![feature(nll)]
                    let musig_stage = MultiSignatureStage::Reveal;
                    Err(SignatureError::MuSigInconsistent { musig_stage, duplicate: true, })
                },  // Should we have a general duplicate reveal error for this case?
        }
    }

    #[allow(non_snake_case)]
    fn set_cosigned(&mut self, s: Scalar) -> SignatureResult<()> {
        match self {
            CoR::Collect { .. } => panic!("Internal error, set_cosigned during collection phase."),
            CoR::Commit(_) => {
                    let musig_stage = MultiSignatureStage::Reveal;
                    Err(SignatureError::MuSigAbsent { musig_stage, })
                },
            CoR::Reveal(_) => {
                    *self = CoR::Cosigned { s };
                    Ok(())
                },
            CoR::Cosigned { s: s_old } =>
                if *s_old==s { Ok(()) } else {
                    let musig_stage = MultiSignatureStage::Cosignature;
                    Err(SignatureError::MuSigInconsistent { musig_stage, duplicate: true, })
                },
        }
    }
}


/// Schnorr multi-signature (MuSig) container generic over its session types
#[allow(non_snake_case)]
pub struct MuSig<T: SigningTranscript+Clone,S> {
    t: T,
    Rs: BTreeMap<PublicKey,CoR>,
    stage: S
}

impl<T: SigningTranscript+Clone,S> MuSig<T,S> {
    /// Iterates over public keys.
    ///
    /// If `require_reveal=true` then we count only public key that revealed their `R` values.
    pub fn public_keys(&self, require_reveal: bool) -> impl Iterator<Item=&PublicKey> {
        self.Rs.iter().filter_map( move |(pk,cor)| match cor {
            CoR::Commit(_) => if require_reveal { None } else { Some(pk) },
            CoR::Reveal(_) => Some(pk),
            CoR::Cosigned { .. } => Some(pk),
            CoR::Collect { .. } => Some(pk),
        } )
    }

    /// Aggregate public key
    ///
    /// If `require_reveal=true` then we count only public key that revealed their `R` values.
    fn compute_public_key(&self, require_reveal: bool) -> PublicKey {
        let t0 = commit_public_keys(self.public_keys(require_reveal));
        let point = self.public_keys(require_reveal).map( |pk|
            compute_weighting(t0.clone(), pk) * pk.as_point()
        ).sum();
        PublicKey::from_point(point)
    }

    /// Aggregate public key given currently revealed `R` values
    pub fn public_key(&self) -> PublicKey
        {  self.compute_public_key(true)  }

    /// Aggregate public key expected if all currently committed nodes fully participate
    pub fn expected_public_key(&self) -> PublicKey
        {  self.compute_public_key(false)  }

    /// Iterator over the Rs values we actually use.
    ///
    /// Only compatable with `compute_public_key` when calling it with `require_reveal=true`
    #[allow(non_snake_case)]
    fn iter_Rs(&self) -> impl Iterator<Item = (&PublicKey,&RevealedPoints)> {
        self.Rs.iter().filter_map( |(pk,cor)| match cor {
            CoR::Commit(_) => None,
            CoR::Reveal(reveal) => Some((pk,reveal)),
            CoR::Cosigned { .. } => panic!("Internal error, compute_R called during cosigning phase."),
            CoR::Collect { reveal, .. } => Some((pk,reveal)),
        } )
    }

    /// Computes the delinearizing `R` values.
    ///
    /// Requires `self.t` be in its final state. 
    /// Only compatable with `compute_public_key` when calling it with `require_reveal=true`
    #[allow(non_snake_case)]
    fn rewinder(&self) -> impl Fn(&PublicKey) -> [Scalar; REWINDS] {
        let mut t0 = self.t.clone();
        for (pk,R) in self.iter_Rs() {
            t0.commit_point(b"pk-set", pk.as_compressed() );
            for anR in R.0.iter() {
                t0.commit_point(b"R",& anR.compress());
            }
        }
        move |pk| {
            let mut t1 = t0.clone();
            t1.commit_point(b"pk-choice", pk.as_compressed() );
            let mut a = ArrayVec::<[Scalar; REWINDS]>::new();
            while !a.is_full() {
                a.push( t1.challenge_scalar(b"R") );
            }
            a.into_inner().unwrap()
        }
    }

    /// Computes final `R` value.
    ///
    /// Requires that `rewinder` be the result of `self.rewinder`.
    /// Only compatable with `compute_public_key` when calling it with `require_reveal=true`
    #[allow(non_snake_case)]
    fn compute_R<F>(&self, rewinder: F) -> CompressedRistretto
    where F: Fn(&PublicKey) -> [Scalar; REWINDS]
    {
        self.iter_Rs().map( |(pk,R)|
            R.0.iter().zip(&rewinder(pk)).map(|(y,x)| x*y).sum::<RistrettoPoint>()
        ).sum::<RistrettoPoint>().compress()
    }
}


/// Initial cosigning stages during which transcript modification
/// remains possible but not advisable.
pub trait TranscriptStages {}
impl<K> TranscriptStages for CommitStage<K> where K: Borrow<Keypair> {}
impl<K> TranscriptStages for RevealStage<K> where K: Borrow<Keypair> {}
impl<T,S> MuSig<T,S> 
where T: SigningTranscript+Clone, S: TranscriptStages
{
    /// We permit extending the transcript whenever you like, so
    /// that say the message may be agreed upon in parallel to the
    /// commitments.  We advise against doing so however, as this
    /// requires absolute faith in your random number generator,
    /// usually `rand::thread_rng()`.
    pub fn transcript(&mut self) -> &mut T { &mut self.t }
}

impl Keypair {
    /// Initialize a multi-signature aka cosignature protocol run.
    ///
    /// We borrow the keypair here to discurage keeping too many
    /// copies of the private key, but the `MuSig::new` method
    /// can create an owned version, or use `Rc` or `Arc`.
    #[allow(non_snake_case)]
    pub fn musig<'k,T>(&'k self, t: T) -> MuSig<T,CommitStage<&'k Keypair>>
    where T: SigningTranscript+Clone {
        MuSig::new(self,t)
    }
}

/// Commitment stage for cosigner's `R` values
#[allow(non_snake_case)]
pub struct CommitStage<K: Borrow<Keypair>> {
    keypair: K,
    r_me: [Scalar; REWINDS],
    R_me: Reveal,
}

impl<K,T> MuSig<T,CommitStage<K>>
where K: Borrow<Keypair>, T: SigningTranscript+Clone
{
    /// Initialize a multi-signature aka cosignature protocol run.
    ///
    /// We encurage borrowing the `Keypair` to minimize copies of
    /// the private key, so we provide the `Keypair::musig` method
    /// for the `K = &'k Keypair` case.  You could use `Rc` or `Arc`
    /// with this `MuSig::new` method, or even pass in an owned copy.
    #[allow(non_snake_case)]
    pub fn new(keypair: K, t: T) -> MuSig<T,CommitStage<K>> {
        let nonce = &keypair.borrow().secret.nonce;

        let mut r_me = ArrayVec::<[Scalar; REWINDS]>::new();
        for i in 0..REWINDS {
            r_me.push( t.witness_scalar(b"MuSigWitness",&[nonce,&i.to_le_bytes()]) );
        }
        let r_me = r_me.into_inner().unwrap();
        // context, message, nonce, but not &self.public.compressed

        let B = &constants::RISTRETTO_BASEPOINT_TABLE;
        let R_me_points: ArrayVec<[RistrettoPoint; REWINDS]> = r_me.iter()
            .map(|r_me_i| r_me_i * B).collect();
        let R_me_points = RevealedPoints(R_me_points.into_inner().unwrap());
        let R_me = R_me_points.to_reveal();

        let mut Rs = BTreeMap::new();
        Rs.insert(keypair.borrow().public, CoR::Reveal( R_me_points ));

        let stage = CommitStage { keypair, r_me, R_me };
        MuSig { t, Rs, stage, }
    }

    /// Our commitment to our `R` to send to all other cosigners
    pub fn our_commitment(&self) -> Commitment {
        self.stage.R_me.to_commitment().unwrap()
    }

    /// Add a new cosigner's public key and associated `R` bypassing our commitmewnt phase.
    pub fn add_their_commitment(&mut self, them: PublicKey, theirs: Commitment)
     -> SignatureResult<()>
    {
        let theirs = CoR::Commit(theirs);
        match self.Rs.entry(them) {
            Entry::Vacant(v) => { v.insert(theirs); () },
            Entry::Occupied(o) =>
                if o.get() != &theirs {
                    let musig_stage = MultiSignatureStage::Commitment;
                    return Err(SignatureError::MuSigInconsistent { musig_stage, duplicate: true, });
                },
        }
        Ok(())
    }

    /// Commit to reveal phase transition.
    #[allow(non_snake_case)]
    pub fn reveal_stage(self) -> MuSig<T,RevealStage<K>> {
        let MuSig { t, Rs, stage: CommitStage { keypair, r_me, R_me, }, } = self;
        MuSig { t, Rs, stage: RevealStage { keypair, r_me, R_me, }, }
    }
}

/// Reveal stage for cosigner's `R` values
#[allow(non_snake_case)]
pub struct RevealStage<K: Borrow<Keypair>> {
    keypair: K,
    r_me: [Scalar; REWINDS],
    R_me: Reveal,
}

impl<K,T> MuSig<T,RevealStage<K>> 
where K: Borrow<Keypair>, T: SigningTranscript+Clone
{
    /// Reveal our `R` contribution to send to all other cosigners
    pub fn our_reveal(&self) -> &Reveal { &self.stage.R_me }

    // TODO: Permit `add_their_reveal` and `add_trusted` in `CommitStage`
    // using const generics, const fn, and replacing the `*Stage` types
    // with some enum.

    /// Include a revealed `R` value from a previously committed cosigner
    pub fn add_their_reveal(&mut self, them: PublicKey, theirs: Reveal)
     -> SignatureResult<()>
    {
        match self.Rs.entry(them) {
            Entry::Vacant(_) => {
                let musig_stage = MultiSignatureStage::Commitment;
                Err(SignatureError::MuSigAbsent { musig_stage, })
            },
            Entry::Occupied(mut o) =>
                o.get_mut().set_revealed(theirs),
        }
    }

    /// Add a new cosigner's public key and associated `R` bypassing our
    /// commitmewnt phase.
    ///
    /// We implemented defenses that reduce the risks posed by this
    /// method, but anyone who wishes provable security should heed
    /// the advice below:
    ///
    /// Avoid using this due to the attack described in
    /// "On the Provable Security of Two-Round Multi-Signatures" by
    /// Manu Drijvers, Kasra Edalatnejad, Bryan Ford, and Gregory Neven
    /// https://eprint.iacr.org/2018/417
    /// Avoid using this for public keys held by networked devices
    /// in particular.
    ///
    /// There are however limited scenarios in which using this appears
    /// secure, primarily if the trusted device is (a) air gapped,
    /// (b) stateful, and (c) infrequently used, via some constrained
    /// channel like manually scanning QR code.  Almost all hardware
    /// wallets designs fail (b), but non-hardware wallets fail (a),
    /// with the middle ground being only something like Pairty Signer.
    /// Also, any public keys controlled by an organization likely
    /// fail (c) too, making this only useful for individuals.
    pub fn add_trusted(&mut self, them: PublicKey, theirs: Reveal)
     -> SignatureResult<()>
    {
        let reveal = theirs.into_points() ?;
        let theirs = CoR::Reveal(reveal);
        match self.Rs.entry(them) {
            Entry::Vacant(v) => { v.insert(theirs); () },
            Entry::Occupied(o) =>
                if o.get() != &theirs {
                    let musig_stage = MultiSignatureStage::Reveal;
                    return Err(SignatureError::MuSigInconsistent { musig_stage, duplicate: true, });
                },
        }
        Ok(())
    }

    /// Reveal to cosign phase transition.
    #[allow(non_snake_case)]
    pub fn cosign_stage(mut self) -> MuSig<T,CosignStage> {
        self.t.proto_name(b"Schnorr-sig");

        let pk = self.public_key().as_compressed().clone();
        self.t.commit_point(b"sign:pk",&pk);

        let rewinder = self.rewinder();
        let rewinds = rewinder(&self.stage.keypair.borrow().public);
        let R = self.compute_R(rewinder);
        self.t.commit_point(b"sign:R",&R);

        let t0 = commit_public_keys(self.public_keys(true));
        let a_me = compute_weighting(t0, &self.stage.keypair.borrow().public);
        let c = self.t.challenge_scalar(b"sign:c");  // context, message, A/public_key, R=rG

        let mut s_me: Scalar = self.stage.r_me.iter().zip(&rewinds).map(|(y,x)| x*y).sum();
        s_me += &(&c * &a_me * &self.stage.keypair.borrow().secret.key);

        ::zeroize::Zeroize::zeroize(&mut self.stage.r_me);

        let MuSig { t, mut Rs, stage: RevealStage { .. }, } = self;
        *(Rs.get_mut(&self.stage.keypair.borrow().public).expect("Rs known to contain this public; qed")) = CoR::Cosigned { s: s_me.clone() };
        MuSig { t, Rs, stage: CosignStage { R, s_me }, }
    }
}

/// Final cosigning stage  colelction
#[allow(non_snake_case)]
pub struct CosignStage {
    /// Collective `R` value
    R: CompressedRistretto,
    /// Our `s` contribution
    s_me: Scalar,
}

/// Cosignatures shared between cosigners during signing
#[derive(Debug,Clone,Copy,PartialEq,Eq)]
pub struct Cosignature(pub [u8; 32]);

impl<T: SigningTranscript+Clone> MuSig<T,CosignStage> {
    /// Reveals our signature contribution
    pub fn our_cosignature(&self) -> Cosignature {
        Cosignature(self.stage.s_me.to_bytes())
    }

    /// Include a cosignature from another cosigner
    pub fn add_their_cosignature(&mut self, them: PublicKey, theirs: Cosignature)
     -> SignatureResult<()>
    {
        let theirs = Scalar::from_canonical_bytes(theirs.0)
            .ok_or(SignatureError::ScalarFormatError) ?;
        match self.Rs.entry(them) {
            Entry::Vacant(_) => {
                    let musig_stage = MultiSignatureStage::Reveal;
                    Err(SignatureError::MuSigAbsent { musig_stage, })
                },
            Entry::Occupied(mut o) => o.get_mut().set_cosigned(theirs)
        }
    }

    /// Interate over the cosigners who successfully revaled and
    /// later cosigned.
    pub fn cosigned(&self) -> impl Iterator<Item=&PublicKey> {
        self.Rs.iter().filter_map( |(pk,cor)| match cor {
            CoR::Commit(_) => None,
            CoR::Reveal(_) => None,
            CoR::Cosigned { .. } => Some(pk),
            CoR::Collect { .. } => panic!("Collect found in Cosign phase.")
        } )
    }

    /// Interate over the possible cosigners who successfully committed
    /// and revaled, but actually cosigned.
    pub fn uncosigned(&self) -> impl Iterator<Item=&PublicKey> {
        self.Rs.iter().filter_map( |(pk,cor)| match cor {
            CoR::Commit(_) => None,
            CoR::Reveal(_) => Some(pk),
            CoR::Cosigned { .. } => None,
            CoR::Collect { .. } => panic!("Collect found in Cosign phase."),
        } )
    }

    /// Actually computes the cosignature
    #[allow(non_snake_case)]
    pub fn sign(&self) -> Option<Signature> {
        // if self.uncosigned().all(|_| false) { return None; }  // TODO:  why does this fail?
        if self.uncosigned().last().is_some() { return None; }
        let s: Scalar = self.Rs.iter()
            .filter_map( |(_pk,cor)| match cor {
                CoR::Commit(_) => None,
                CoR::Reveal(_) => panic!("Internal error, MuSig<T,CosignStage>::uncosigned broken."),
                CoR::Cosigned { s, .. } => Some(s),
                CoR::Collect { .. } => panic!("Collect found in Cosign phase."),
            } ).sum();
        Some(Signature { s, R: self.stage.R, })
    }
}


/// Initialize a collector of cosignatures who does not themselves cosign.
#[allow(non_snake_case)]
pub fn collect_cosignatures<T: SigningTranscript+Clone>(mut t: T) -> MuSig<T,CollectStage> {
    t.proto_name(b"Schnorr-sig");
    MuSig { t, Rs: BTreeMap::new(), stage: CollectStage, }
}

/// Initial stage for cosignature collectors who do not themselves cosign.
pub struct CollectStage;

impl<T: SigningTranscript+Clone> MuSig<T,CollectStage> {
    /// Adds revealed `R` and cosignature into a cosignature collector
    #[allow(non_snake_case)]
    pub fn add(&mut self, them: PublicKey, their_reveal: Reveal, their_cosignature: Cosignature)
     -> SignatureResult<()>
    {
        let reveal = their_reveal.into_points() ?;
        let s = Scalar::from_canonical_bytes(their_cosignature.0)
            .ok_or(SignatureError::ScalarFormatError) ?;
        let cor = CoR::Collect { reveal, s };

        match self.Rs.entry(them) {
            Entry::Vacant(v) => { v.insert(cor); () },
            Entry::Occupied(o) =>
                if o.get() != &cor {
                    let musig_stage = MultiSignatureStage::Reveal;
                    return Err(SignatureError::MuSigInconsistent { musig_stage, duplicate: true, });
                },
        }
        Ok(())
    }

    /// Actually computes the collected cosignature.
    #[allow(non_snake_case)]
    pub fn signature(mut self) -> Signature {
        let pk = self.public_key().as_compressed().clone();
        self.t.commit_point(b"sign:pk",&pk);

        let R = self.compute_R(self.rewinder());

        let s: Scalar = self.Rs.iter()
            .map( |(_pk,cor)| match cor {
                CoR::Collect { s, .. } => s,
                _ => panic!("Reached CollectStage from another stage"),
            } ).sum();
        Signature { s, R, }
    }
}


#[cfg(test)]
mod tests {
    #[cfg(feature = "alloc")]
    use alloc::vec::Vec;
    #[cfg(feature = "std")]
    use std::vec::Vec;

    use super::*;

    #[test]
    fn aggregation_btreeemap_vs_slice() {
        let mut vec: Vec<PublicKey> = (0..16).map(|_| SecretKey::generate().to_public()).collect();
        let btm: BTreeMap<PublicKey,()> = vec.iter().map( |x| (x.clone(),()) ).collect();
        debug_assert_eq!(
            btm.public_key(),
            aggregate_public_key_from_slice(vec.as_mut_slice()).unwrap().public_key()
        );
        // NLL aggregate_public_key_from_sorted_slice
    }

    #[test]
    fn multi_signature() {
        let keypairs: Vec<Keypair> = (0..16).map(|_| Keypair::generate()).collect();

        let t = signing_context(b"multi-sig").bytes(b"We are legion!");
        let mut commits: Vec<_> = keypairs.iter().map( |k| k.musig(t.clone()) ).collect();
        for i in 0..commits.len() {
        let r = commits[i].our_commitment();
            for j in commits.iter_mut() {
                assert!( j.add_their_commitment(keypairs[i].public.clone(),r)
                    .is_ok() != (r == j.our_commitment()) );
            }
        }

        let mut reveal_msgs: Vec<Reveal> = Vec::with_capacity(commits.len());
        let mut reveals: Vec<_> = commits.drain(..).map( |c| c.reveal_stage() ).collect();
        for i in 0..reveals.len() {
            let r = reveals[i].our_reveal().clone();
            for j in reveals.iter_mut() {
                j.add_their_reveal(keypairs[i].public.clone(),r.clone()).unwrap();
            }
            reveal_msgs.push(r);
        }
        let pk = reveals[0].public_key();

        let mut cosign_msgs: Vec<Cosignature> = Vec::with_capacity(reveals.len());
        let mut cosigns: Vec<_> = reveals.drain(..).map( |c| { assert_eq!(pk, c.public_key()); c.cosign_stage() } ).collect();
        for i in 0..cosigns.len() {
            assert_eq!(pk, cosigns[i].public_key());
            let r = cosigns[i].our_cosignature();
            for j in cosigns.iter_mut() {
                j.add_their_cosignature(keypairs[i].public.clone(),r).unwrap();
            }
            cosign_msgs.push(r);
            assert_eq!(pk, cosigns[i].public_key());
        }

        // let signature = cosigns[0].sign().unwrap();
        let mut c = collect_cosignatures(t.clone());
        for i in 0..cosigns.len() {
            c.add(keypairs[i].public.clone(),reveal_msgs[i].clone(),cosign_msgs[i].clone()).unwrap();
        }
        let signature = c.signature();

        assert!( pk.verify(t,&signature).is_ok() );
        for i in 0..cosigns.len() {
            assert_eq!(pk, cosigns[i].public_key());
            assert_eq!(signature, cosigns[i].sign().unwrap());
        }
    }
}