Files
addr2line
ahash
aho_corasick
arrayref
arrayvec
artemis_asset
artemis_core
artemis_erc20_app
artemis_eth_app
artemis_ethereum
backtrace
base58
bip39
bitmask
bitvec
blake2_rfc
block_buffer
block_padding
byte_slice_cast
byte_tools
byteorder
cfg_if
clear_on_drop
const_random
const_random_macro
constant_time_eq
crunchy
crypto_mac
curve25519_dalek
derive_more
digest
ed25519_dalek
either
environmental
ethabi_decode
ethbloom
ethereum_types
failure
failure_derive
fake_simd
fixed_hash
frame_metadata
frame_support
frame_support_procedural
frame_support_procedural_tools
frame_support_procedural_tools_derive
frame_system
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
generic_array
getrandom
gimli
hash256_std_hasher
hash_db
hashbrown
hex
hex_literal
hmac
hmac_drbg
impl_codec
impl_rlp
impl_serde
impl_trait_for_tuples
inflector
cases
camelcase
case
classcase
kebabcase
pascalcase
screamingsnakecase
sentencecase
snakecase
tablecase
titlecase
traincase
numbers
deordinalize
ordinalize
string
constants
deconstantize
demodulize
pluralize
singularize
suffix
foreignkey
integer_sqrt
itertools
keccak
lazy_static
libc
lock_api
log
memchr
memory_db
memory_units
merlin
nodrop
num_bigint
num_cpus
num_integer
num_rational
num_traits
object
once_cell
opaque_debug
pallet_bridge
pallet_verifier
parity_scale_codec
parity_scale_codec_derive
parity_util_mem
parity_util_mem_derive
parity_wasm
parking_lot
parking_lot_core
paste
paste_impl
pbkdf2
pin_project
pin_project_internal
pin_utils
ppv_lite86
primitive_types
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
radium
rand
rand_chacha
rand_core
rand_pcg
ref_cast
ref_cast_impl
regex
regex_syntax
rental
rental_impl
rlp
rustc_demangle
rustc_hash
rustc_hex
schnorrkel
scopeguard
secp256k1
serde
serde_derive
sha2
slab
smallvec
sp_application_crypto
sp_arithmetic
sp_core
sp_debug_derive
sp_externalities
sp_inherents
sp_io
sp_panic_handler
sp_runtime
sp_runtime_interface
sp_runtime_interface_proc_macro
sp_state_machine
sp_std
sp_storage
sp_tracing
sp_trie
sp_version
sp_wasm_interface
stable_deref_trait
static_assertions
substrate_bip39
subtle
syn
synstructure
thread_local
tiny_keccak
toml
tracing
tracing_attributes
tracing_core
trie_db
trie_root
twox_hash
typenum
uint
unicode_normalization
unicode_xid
wasmi
wasmi_validation
zeroize
zeroize_derive
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
/*! General trait implementations for `BitVec`.

The operator traits are defined in the `ops` module.
!*/

use super::*;

use crate::{
	order::BitOrder,
	store::BitStore,
};

use alloc::{
	borrow::{
		Borrow,
		BorrowMut,
		ToOwned,
	},
	boxed::Box,
	vec::Vec,
};

use core::{
	cmp::Ordering,
	fmt::{
		self,
		Binary,
		Debug,
		Display,
		Formatter,
		LowerHex,
		Octal,
		UpperHex,
	},
	hash::{
		Hash,
		Hasher,
	},
	marker::PhantomData,
	mem,
};

/// Signifies that `BitSlice` is the borrowed form of `BitVec`.
impl<O, T> Borrow<BitSlice<O, T>> for BitVec<O, T>
where O: BitOrder, T: BitStore {
	/// Borrows the `BitVec` as a `BitSlice`.
	///
	/// # Parameters
	///
	/// - `&self`
	///
	/// # Returns
	///
	/// A borrowed `BitSlice` of the vector.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	/// use std::borrow::Borrow;
	///
	/// let bv = bitvec![0; 13];
	/// let bs: &BitSlice = bv.borrow();
	/// assert!(!bs[10]);
	/// ```
	fn borrow(&self) -> &BitSlice<O, T> {
		self.as_bitslice()
	}
}

/// Signifies that `BitSlice` is the borrowed form of `BitVec`.
impl<O, T> BorrowMut<BitSlice<O, T>> for BitVec<O, T>
where O: BitOrder, T: BitStore {
	/// Mutably borrows the `BitVec` as a `BitSlice`.
	///
	/// # Parameters
	///
	/// - `&mut self`
	///
	/// # Returns
	///
	/// A mutably borrowed `BitSlice` of the vector.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	/// use std::borrow::BorrowMut;
	///
	/// let mut bv = bitvec![0; 13];
	/// let bs: &mut BitSlice = bv.borrow_mut();
	/// assert!(!bs[10]);
	/// bs.set(10, true);
	/// assert!(bs[10]);
	/// ```
	fn borrow_mut(&mut self) -> &mut BitSlice<O, T> {
		self.as_mut_bitslice()
	}
}

impl<O, T> Clone for BitVec<O, T>
where O: BitOrder, T: BitStore {
	fn clone(&self) -> Self {
		let new_vec = self.as_slice().to_owned();
		let capacity = new_vec.capacity();
		let mut pointer = self.pointer;
		unsafe { pointer.set_pointer(new_vec.as_ptr()); }
		mem::forget(new_vec);
		Self {
			_order: PhantomData,
			pointer, // unsafe { BitPtr::new_unchecked(ptr, e, h, t) },
			capacity,
		}
	}

	fn clone_from(&mut self, other: &Self) {
		let slice = other.pointer.as_slice();
		self.clear();
		//  Copy the other data region into the underlying vector, then grab its
		//  pointer and capacity values.
		let (ptr, capacity) = self.with_vec(|v| {
			v.copy_from_slice(slice);
			(v.as_ptr(), v.capacity())
		});
		//  Copy the other `BitPtr<T>`,
		let mut pointer = other.pointer;
		//  Then set it to aim at the copied pointer.
		unsafe { pointer.set_pointer(ptr); }
		//  And set the new pointer/capacity.
		self.pointer = pointer;
		self.capacity = capacity;
	}
}

impl<O, T> Eq for BitVec<O, T>
where O: BitOrder, T: BitStore {}

impl<O, T> Ord for BitVec<O, T>
where O: BitOrder, T: BitStore {
	fn cmp(&self, rhs: &Self) -> Ordering {
		self.as_bitslice().cmp(rhs.as_bitslice())
	}
}

/** Tests if two `BitVec`s are semantically — not bitwise — equal.

It is valid to compare two vectors of different order or element types.

The equality condition requires that they have the same number of stored bits
and that each pair of bits in semantic order are identical.
**/
impl<A, B, C, D> PartialEq<BitVec<C, D>> for BitVec<A, B>
where A: BitOrder, B: BitStore, C: BitOrder, D: BitStore {
	/// Performs a comparison by `==`.
	///
	/// # Parameters
	///
	/// - `&self`
	/// - `rhs`: The other vector to compare.
	///
	/// # Returns
	///
	/// Whether the vectors compare equal.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let l: BitVec<Lsb0, u16> = bitvec![Lsb0, u16; 0, 1, 0, 1];
	/// let r: BitVec<Msb0, u32> = bitvec![Msb0, u32; 0, 1, 0, 1];
	/// assert!(l == r);
	/// ```
	///
	/// This example uses the same types to prove that raw, bitwise, values are
	/// not used for equality comparison.
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let l: BitVec<Msb0, u8> = bitvec![Msb0, u8; 0, 1, 0, 1];
	/// let r: BitVec<Lsb0, u8> = bitvec![Lsb0, u8; 0, 1, 0, 1];
	///
	/// assert_eq!(l, r);
	/// assert_ne!(l.as_slice(), r.as_slice());
	/// ```
	fn eq(&self, rhs: &BitVec<C, D>) -> bool {
		self.as_bitslice().eq(rhs.as_bitslice())
	}
}

impl<A, B, C, D> PartialEq<BitSlice<C, D>> for BitVec<A, B>
where A: BitOrder, B: BitStore, C: BitOrder, D: BitStore {
	fn eq(&self, rhs: &BitSlice<C, D>) -> bool {
		self.as_bitslice().eq(rhs)
	}
}

impl<A, B, C, D> PartialEq<BitVec<C, D>> for BitSlice<A, B>
where A: BitOrder, B: BitStore, C: BitOrder, D: BitStore {
	fn eq(&self, rhs: &BitVec<C, D>) -> bool {
		self.eq(rhs.as_bitslice())
	}
}

impl<A, B, C, D> PartialEq<&BitSlice<C, D>> for BitVec<A, B>
where A: BitOrder, B: BitStore, C: BitOrder, D: BitStore {
	fn eq(&self, rhs: &&BitSlice<C, D>) -> bool {
		self.as_bitslice().eq(*rhs)
	}
}

// impl<A, B, C, D> PartialEq<&mut BitSlice<C, D>> for BitVec<A, B>
// where A: BitOrder, B: BitStore, C: BitOrder, D: BitStore {
// 	fn eq(&self, rhs: &&mut BitSlice<C, D>) -> bool {
// 		self.as_bitslice().eq(*rhs)
// 	}
// }

impl<A, B, C, D> PartialEq<BitVec<C, D>> for &BitSlice<A, B>
where A: BitOrder, B: BitStore, C: BitOrder, D: BitStore {
	fn eq(&self, rhs: &BitVec<C, D>) -> bool {
		self.eq(rhs.as_bitslice())
	}
}

// impl<A, B, C, D> PartialEq<BitVec<C, D>> for &mut BitSlice<A, B>
// where A: BitOrder, B: BitStore, C: BitOrder, D: BitStore {
// 	fn eq(&self, rhs: &BitVec<C, D>) -> bool {
// 		(**self).eq(rhs.as_bitslice())
// 	}
// }

/** Compares two `BitVec`s by semantic — not bitwise — ordering.

The comparison sorts by testing each index for one vector to have a set bit
where the other vector has an unset bit. If the vectors are different, the
vector with the set bit sorts greater than the vector with the unset bit.

If one of the vectors is exhausted before they differ, the longer vector is
greater.
**/
impl<A, B, C, D> PartialOrd<BitVec<C, D>> for BitVec<A, B>
where A: BitOrder, B: BitStore, C: BitOrder, D: BitStore {
	/// Performs a comparison by `<` or `>`.
	///
	/// # Parameters
	///
	/// - `&self`
	/// - `rhs`: The other vector to compare.
	///
	/// # Returns
	///
	/// The relative ordering of the two vectors.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let a = bitvec![0, 1, 0, 0];
	/// let b = bitvec![0, 1, 0, 1];
	/// let c = bitvec![0, 1, 0, 1, 1];
	/// assert!(a < b);
	/// assert!(b < c);
	/// ```
	fn partial_cmp(&self, rhs: &BitVec<C, D>) -> Option<Ordering> {
		self.as_bitslice().partial_cmp(rhs.as_bitslice())
	}
}

impl<A, B, C, D> PartialOrd<BitSlice<C, D>> for BitVec<A, B>
where A: BitOrder, B: BitStore, C: BitOrder, D: BitStore {
	fn partial_cmp(&self, rhs: &BitSlice<C, D>) -> Option<Ordering> {
		self.as_bitslice().partial_cmp(rhs)
	}
}

impl<A, B, C, D> PartialOrd<BitVec<C, D>> for BitSlice<A, B>
where A: BitOrder, B: BitStore, C: BitOrder, D: BitStore {
	fn partial_cmp(&self, rhs: &BitVec<C, D>) -> Option<Ordering> {
		self.partial_cmp(rhs.as_bitslice())
	}
}

impl<A, B, C, D> PartialOrd<&BitSlice<C, D>> for BitVec<A, B>
where A: BitOrder, B: BitStore, C: BitOrder, D: BitStore {
	fn partial_cmp(&self, rhs: &&BitSlice<C, D>) -> Option<Ordering> {
		self.as_bitslice().partial_cmp(*rhs)
	}
}

impl<A, B, C, D> PartialOrd<BitVec<C, D>> for &BitSlice<A, B>
where A: BitOrder, B: BitStore, C: BitOrder, D: BitStore {
	fn partial_cmp(&self, rhs: &BitVec<C, D>) -> Option<Ordering> {
		self.partial_cmp(rhs.as_bitslice())
	}
}

// impl<A, B, C, D> PartialOrd<&mut BitSlice<C, D>> for BitVec<A, B>
// where A: BitOrder, B: BitStore, C: BitOrder, D: BitStore {
// 	fn partial_cmp(&self, rhs: &&mut BitSlice<C, D>) -> Option<Ordering> {
// 		self.as_bitslice().partial_cmp(*rhs)
// 	}
// }

// impl<A, B, C, D> PartialOrd<BitVec<C, D>> for &mut BitSlice<A, B>
// where A: BitOrder, B: BitStore, C: BitOrder, D: BitStore {
// 	fn partial_cmp(&self, rhs: &BitVec<C, D>) -> Option<Ordering> {
// 		(**self).partial_cmp(rhs.as_bitslice())
// 	}
// }

impl<O, T> AsMut<BitSlice<O, T>> for BitVec<O, T>
where O: BitOrder, T: BitStore {
	fn as_mut(&mut self) -> &mut BitSlice<O, T> {
		self.as_mut_bitslice()
	}
}

/// Gives write access to all live elements in the underlying storage, including
/// the partially-filled tail.
impl<O, T> AsMut<[T]> for BitVec<O, T>
where O: BitOrder, T: BitStore {
	fn as_mut(&mut self) -> &mut [T] {
		self.as_mut_slice()
	}
}

impl<O, T> AsRef<BitSlice<O, T>> for BitVec<O, T>
where O: BitOrder, T: BitStore {
	fn as_ref(&self) -> &BitSlice<O, T> {
		self.as_bitslice()
	}
}

/// Gives read access to all live elements in the underlying storage, including
/// the partially-filled tail.
impl<O, T> AsRef<[T]> for BitVec<O, T>
where O: BitOrder, T: BitStore {
	/// Accesses the underlying store.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let bv = bitvec![Msb0, u8; 0, 0, 0, 0, 0, 0, 0, 0, 1];
	/// assert_eq!(&[0, 0b1000_0000], bv.as_slice());
	/// ```
	fn as_ref(&self) -> &[T] {
		self.as_slice()
	}
}

impl<O, T> From<&BitSlice<O, T>> for BitVec<O, T>
where O: BitOrder, T: BitStore {
	fn from(src: &BitSlice<O, T>) -> Self {
		Self::from_bitslice(src)
	}
}

/** Builds a `BitVec` out of a slice of `bool`.

This is primarily for the `bitvec!` macro; it is not recommended for general
use.
**/
impl<O, T> From<&[bool]> for BitVec<O, T>
where O: BitOrder, T: BitStore {
	fn from(src: &[bool]) -> Self {
		src.iter().cloned().collect()
	}
}

impl<O, T> From<BitBox<O, T>> for BitVec<O, T>
where O: BitOrder, T: BitStore {
	fn from(src: BitBox<O, T>) -> Self {
		Self::from_boxed_bitslice(src)
	}
}

impl<O, T> From<&[T]> for BitVec<O, T>
where O: BitOrder, T: BitStore {
	fn from(src: &[T]) -> Self {
		Self::from_slice(src)
	}
}

impl<O, T> From<Box<[T]>> for BitVec<O, T>
where O: BitOrder, T: BitStore {
	fn from(src: Box<[T]>) -> Self {
		Self::from_boxed_bitslice(BitBox::from_boxed_slice(src))
	}
}

impl<O, T> Into<Box<[T]>> for BitVec<O, T>
where O: BitOrder, T: BitStore {
	fn into(self) -> Box<[T]> {
		self.into_boxed_slice()
	}
}

/** Builds a `BitVec` out of a `Vec` of elements.

This moves the memory as-is from the source buffer into the new `BitVec`. The
source buffer will be unchanged by this operation, so you don't need to worry
about using the correct order type.
**/
impl<O, T> From<Vec<T>> for BitVec<O, T>
where O: BitOrder, T: BitStore {
	fn from(src: Vec<T>) -> Self {
		Self::from_vec(src)
	}
}

impl<O, T> Into<Vec<T>> for BitVec<O, T>
where O: BitOrder, T: BitStore {
	fn into(self) -> Vec<T> {
		self.into_vec()
	}
}

impl<O, T> Default for BitVec<O, T>
where O: BitOrder, T: BitStore {
	fn default() -> Self {
		Self::new()
	}
}

impl<O, T> Binary for BitVec<O, T>
where O: BitOrder, T: BitStore {
	fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
		Binary::fmt(self.as_bitslice(), fmt)
	}
}

/** Prints the `BitVec` for debugging.

The output is of the form `BitVec<O, T> [ELT, *]`, where `<O, T>` is the order
and element type, with square brackets on each end of the bits and all the live
elements in the vector printed in binary. The printout is always in semantic
order, and may not reflect the underlying store. To see the underlying store,
use `format!("{:?}", self.as_slice());` instead.

The alternate character `{:#?}` prints each element on its own line, rather than
separated by a space.
**/
impl<O, T> Debug for BitVec<O, T>
where O: BitOrder, T: BitStore {
	/// Renders the `BitVec` type header and contents for debug.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let bv = bitvec![Lsb0, u16;
	///   0, 1, 0, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1
	/// ];
	/// assert_eq!(
	///   "BitVec<Lsb0, u16> [0101000011110101]",
	///   &format!("{:?}", bv)
	/// );
	/// ```
	fn fmt(&self, f: &mut Formatter) -> fmt::Result {
		f.write_str("BitVec<")?;
		f.write_str(O::TYPENAME)?;
		f.write_str(", ")?;
		f.write_str(T::TYPENAME)?;
		f.write_str("> ")?;
		Display::fmt(&**self, f)
	}
}

/** Prints the `BitVec` for displaying.

This prints each element in turn, formatted in binary in semantic order (so the
first bit seen is printed first and the last bit seen printed last). Each
element of storage is separated by a space for ease of reading.

The alternate character `{:#}` prints each element on its own line.

To see the in-memory representation, use `AsRef` to get access to the raw
elements and print that slice instead.
**/
impl<O, T> Display for BitVec<O, T>
where O: BitOrder, T: BitStore {
	/// Renders the `BitVec` contents for display.
	///
	/// # Examples
	///
	/// ```rust
	/// use bitvec::prelude::*;
	///
	/// let bv = bitvec![Msb0, u8; 0, 1, 0, 0, 1, 0, 1, 1, 0, 1];
	/// assert_eq!("[01001011, 01]", &format!("{}", bv));
	/// ```
	fn fmt(&self, f: &mut Formatter) -> fmt::Result {
		Display::fmt(&**self, f)
	}
}

impl<O, T> LowerHex for BitVec<O, T>
where O: BitOrder, T: BitStore {
	fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
		LowerHex::fmt(self.as_bitslice(), fmt)
	}
}

impl<O, T> Octal for BitVec<O, T>
where O: BitOrder, T: BitStore {
	fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
		Octal::fmt(self.as_bitslice(), fmt)
	}
}

impl<O, T> UpperHex for BitVec<O, T>
where O: BitOrder, T: BitStore {
	fn fmt(&self, fmt: &mut Formatter) -> fmt::Result {
		UpperHex::fmt(self.as_bitslice(), fmt)
	}
}

/// Writes the contents of the `BitVec`, in semantic bit order, into a hasher.
impl<O, T> Hash for BitVec<O, T>
where O: BitOrder, T: BitStore {
	/// Writes each bit of the `BitVec`, as a full `bool`, into the hasher.
	///
	/// # Parameters
	///
	/// - `&self`
	/// - `hasher`: The hashing pool into which the vector is written.
	fn hash<H: Hasher>(&self, hasher: &mut H) {
		<BitSlice<O, T> as Hash>::hash(self, hasher)
	}
}

/// `BitVec` is safe to move across thread boundaries, as is `&mut BitVec`.
unsafe impl<O, T> Send for BitVec<O, T>
where O: BitOrder, T: BitStore {}

/// `&BitVec` is safe to move across thread boundaries.
unsafe impl<O, T> Sync for BitVec<O, T>
where O: BitOrder, T: BitStore {}