Files
addr2line
ahash
aho_corasick
arrayref
arrayvec
artemis_asset
artemis_core
artemis_erc20_app
artemis_eth_app
artemis_ethereum
backtrace
base58
bip39
bitmask
bitvec
blake2_rfc
block_buffer
block_padding
byte_slice_cast
byte_tools
byteorder
cfg_if
clear_on_drop
const_random
const_random_macro
constant_time_eq
crunchy
crypto_mac
curve25519_dalek
derive_more
digest
ed25519_dalek
either
environmental
ethabi_decode
ethbloom
ethereum_types
failure
failure_derive
fake_simd
fixed_hash
frame_metadata
frame_support
frame_support_procedural
frame_support_procedural_tools
frame_support_procedural_tools_derive
frame_system
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
generic_array
getrandom
gimli
hash256_std_hasher
hash_db
hashbrown
hex
hex_literal
hmac
hmac_drbg
impl_codec
impl_rlp
impl_serde
impl_trait_for_tuples
inflector
cases
camelcase
case
classcase
kebabcase
pascalcase
screamingsnakecase
sentencecase
snakecase
tablecase
titlecase
traincase
numbers
deordinalize
ordinalize
string
constants
deconstantize
demodulize
pluralize
singularize
suffix
foreignkey
integer_sqrt
itertools
keccak
lazy_static
libc
lock_api
log
memchr
memory_db
memory_units
merlin
nodrop
num_bigint
num_cpus
num_integer
num_rational
num_traits
object
once_cell
opaque_debug
pallet_bridge
pallet_verifier
parity_scale_codec
parity_scale_codec_derive
parity_util_mem
parity_util_mem_derive
parity_wasm
parking_lot
parking_lot_core
paste
paste_impl
pbkdf2
pin_project
pin_project_internal
pin_utils
ppv_lite86
primitive_types
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
radium
rand
rand_chacha
rand_core
rand_pcg
ref_cast
ref_cast_impl
regex
regex_syntax
rental
rental_impl
rlp
rustc_demangle
rustc_hash
rustc_hex
schnorrkel
scopeguard
secp256k1
serde
serde_derive
sha2
slab
smallvec
sp_application_crypto
sp_arithmetic
sp_core
sp_debug_derive
sp_externalities
sp_inherents
sp_io
sp_panic_handler
sp_runtime
sp_runtime_interface
sp_runtime_interface_proc_macro
sp_state_machine
sp_std
sp_storage
sp_tracing
sp_trie
sp_version
sp_wasm_interface
stable_deref_trait
static_assertions
substrate_bip39
subtle
syn
synstructure
thread_local
tiny_keccak
toml
tracing
tracing_attributes
tracing_core
trie_db
trie_root
twox_hash
typenum
uint
unicode_normalization
unicode_xid
wasmi
wasmi_validation
zeroize
zeroize_derive
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
// Copyright 2017, 2018 Parity Technologies
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
//     http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! # Parity SCALE Codec
//!
//! Rust implementation of the SCALE (Simple Concatenated Aggregate Little-Endian) data format
//! for types used in the Parity Substrate framework.
//!
//! SCALE is a light-weight format which allows encoding (and decoding) which makes it highly
//! suitable for resource-constrained execution environments like blockchain runtimes and low-power,
//! low-memory devices.
//!
//! It is important to note that the encoding context (knowledge of how the types and data structures look)
//! needs to be known separately at both encoding and decoding ends.
//! The encoded data does not include this contextual information.
//!
//! To get a better understanding of how the encoding is done for different types,
//! take a look at the
//! [low-level data formats overview page at the Substrate docs site](https://substrate.dev/docs/en/overview/low-level-data-format).
//!
//! ## Implementation
//!
//! The codec is implemented using the following traits:
//!
//! ### Encode
//!
//! The `Encode` trait is used for encoding of data into the SCALE format. The `Encode` trait contains the following functions:

//! * `size_hint(&self) -> usize`: Gets the capacity (in bytes) required for the encoded data.
//! This is to avoid double-allocation of memory needed for the encoding.
//! It can be an estimate and does not need to be an exact number.
//! If the size is not known, even no good maximum, then we can skip this function from the trait implementation.
//! This is required to be a cheap operation, so should not involve iterations etc.
//! * `encode_to<T: Output>(&self, dest: &mut T)`: Encodes the value and appends it to a destination buffer.
//! * `encode(&self) -> Vec<u8>`: Encodes the type data and returns a slice.
//! * `using_encoded<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R`: Encodes the type data and executes a closure on the encoded value.
//! Returns the result from the executed closure.
//!
//! **Note:** Implementations should override `using_encoded` for value types and `encode_to` for allocating types.
//! `size_hint` should be implemented for all types, wherever possible. Wrapper types should override all methods.
//!
//! ### Decode
//!
//! The `Decode` trait is used for deserialization/decoding of encoded data into the respective types.
//!
//! * `fn decode<I: Input>(value: &mut I) -> Result<Self, Error>`: Tries to decode the value from SCALE format to the type it is called on.
//! Returns an `Err` if the decoding fails.
//!
//! ### CompactAs
//!
//! The `CompactAs` trait is used for wrapping custom types/structs as compact types, which makes them even more space/memory efficient.
//! The compact encoding is described [here](https://substrate.dev/docs/en/overview/low-level-data-format#compact-general-integers).
//!
//! * `encode_as(&self) -> &Self::As`: Encodes the type (self) as a compact type.
//! The type `As` is defined in the same trait and its implementation should be compact encode-able.
//! * `decode_from(_: Self::As) -> Self`: Decodes the type (self) from a compact encode-able type.
//!
//! ### HasCompact
//!
//! The `HasCompact` trait, if implemented, tells that the corresponding type is a compact encode-able type.
//!
//! ### EncodeLike
//!
//! The `EncodeLike` trait needs to be implemented for each type manually. When using derive, it is
//! done automatically for you. Basically the trait gives you the opportunity to accept multiple types
//! to a function that all encode to the same representation.
//!
//! ## Usage Examples
//!
//! Following are some examples to demonstrate usage of the codec.
//!
//! ### Simple types
//!
//! ```
//! # // Import macros if derive feature is not used.
//! # #[cfg(not(feature="derive"))]
//! # use parity_scale_codec_derive::{Encode, Decode};
//!
//! use parity_scale_codec::{Encode, Decode};
//!
//! #[derive(Debug, PartialEq, Encode, Decode)]
//! enum EnumType {
//! 	#[codec(index = "15")]
//! 	A,
//! 	B(u32, u64),
//! 	C {
//! 		a: u32,
//! 		b: u64,
//! 	},
//! }
//!
//! let a = EnumType::A;
//! let b = EnumType::B(1, 2);
//! let c = EnumType::C { a: 1, b: 2 };
//!
//! a.using_encoded(|ref slice| {
//!     assert_eq!(slice, &b"\x0f");
//! });
//!
//! b.using_encoded(|ref slice| {
//!     assert_eq!(slice, &b"\x01\x01\0\0\0\x02\0\0\0\0\0\0\0");
//! });
//!
//! c.using_encoded(|ref slice| {
//!     assert_eq!(slice, &b"\x02\x01\0\0\0\x02\0\0\0\0\0\0\0");
//! });
//!
//! let mut da: &[u8] = b"\x0f";
//! assert_eq!(EnumType::decode(&mut da).ok(), Some(a));
//!
//! let mut db: &[u8] = b"\x01\x01\0\0\0\x02\0\0\0\0\0\0\0";
//! assert_eq!(EnumType::decode(&mut db).ok(), Some(b));
//!
//! let mut dc: &[u8] = b"\x02\x01\0\0\0\x02\0\0\0\0\0\0\0";
//! assert_eq!(EnumType::decode(&mut dc).ok(), Some(c));
//!
//! let mut dz: &[u8] = &[0];
//! assert_eq!(EnumType::decode(&mut dz).ok(), None);
//!
//! # fn main() { }
//! ```
//!
//! ### Compact type with HasCompact
//!
//! ```
//! # // Import macros if derive feature is not used.
//! # #[cfg(not(feature="derive"))]
//! # use parity_scale_codec_derive::{Encode, Decode};
//!
//! use parity_scale_codec::{Encode, Decode, Compact, HasCompact};
//!
//! #[derive(Debug, PartialEq, Encode, Decode)]
//! struct Test1CompactHasCompact<T: HasCompact> {
//!     #[codec(compact)]
//!     bar: T,
//! }
//!
//! #[derive(Debug, PartialEq, Encode, Decode)]
//! struct Test1HasCompact<T: HasCompact> {
//!     #[codec(encoded_as = "<T as HasCompact>::Type")]
//!     bar: T,
//! }
//!
//! let test_val: (u64, usize) = (0u64, 1usize);
//!
//! let encoded = Test1HasCompact { bar: test_val.0 }.encode();
//! assert_eq!(encoded.len(), test_val.1);
//! assert_eq!(<Test1CompactHasCompact<u64>>::decode(&mut &encoded[..]).unwrap().bar, test_val.0);
//!
//! # fn main() { }
//! ```
//! ### Type with CompactAs
//!
//! ```rust
//! # // Import macros if derive feature is not used.
//! # #[cfg(not(feature="derive"))]
//! # use parity_scale_codec_derive::{Encode, Decode};
//!
//! use serde_derive::{Serialize, Deserialize};
//! use parity_scale_codec::{Encode, Decode, Compact, HasCompact, CompactAs};
//!
//! #[cfg_attr(feature = "std", derive(Serialize, Deserialize, Debug))]
//! #[derive(PartialEq, Eq, Clone)]
//! struct StructHasCompact(u32);
//!
//! impl CompactAs for StructHasCompact {
//!     type As = u32;
//!
//!     fn encode_as(&self) -> &Self::As {
//!         &12
//!     }
//!
//!     fn decode_from(_: Self::As) -> Self {
//!         StructHasCompact(12)
//!     }
//! }
//!
//! impl From<Compact<StructHasCompact>> for StructHasCompact {
//!     fn from(_: Compact<StructHasCompact>) -> Self {
//!         StructHasCompact(12)
//!     }
//! }
//!
//! #[derive(Debug, PartialEq, Encode, Decode)]
//! enum TestGenericHasCompact<T> {
//!     A {
//!         #[codec(compact)] a: T
//!     },
//! }
//!
//! let a = TestGenericHasCompact::A::<StructHasCompact> {
//!     a: StructHasCompact(12325678),
//! };
//!
//! let encoded = a.encode();
//! assert_eq!(encoded.len(), 2);
//!
//! # fn main() { }
//! ```
//!
//! ## Derive attributes
//!
//! The derive implementation supports the following attributes:
//! - `codec(dumb_trait_bound)`: This attribute needs to be placed above the type that one of the trait
//!   should be implemented for. It will make the algorithm that determines the to-add trait bounds
//!   fall back to just use the type parameters of the type. This can be useful for situation where
//!   the algorithm includes private types in the public interface. By using this attribute, you should
//!   not get this error/warning again.
//! - `codec(skip)`: Needs to be placed above a field and makes the field to be skipped while encoding/decoding.
//! - `codec(compact)`: Needs to be placed above a field and makes the field use compact encoding.
//!   (The type needs to support compact encoding.)
//! - `codec(encoded_as(OtherType))`: Needs to be placed above a field and makes the field being encoded
//!   by using `OtherType`.
//! - `codec(index("0"))`: Needs to be placed above an enum variant to make the variant use the given
//!   index when encoded. By default the index is determined by counting from `0` beginning wth the
//!   first variant.
//!

#![warn(missing_docs)]

#![cfg_attr(not(feature = "std"), no_std)]

#[cfg(not(feature = "std"))]
#[macro_use]
#[doc(hidden)]
pub extern crate alloc;

#[cfg(feature = "parity-scale-codec-derive")]
#[allow(unused_imports)]
#[macro_use]
extern crate parity_scale_codec_derive;

#[cfg(all(feature = "std", test))]
#[macro_use]
extern crate serde_derive;

#[cfg(feature = "parity-scale-codec-derive")]
pub use parity_scale_codec_derive::*;

#[cfg(feature = "std")]
#[doc(hidden)]
pub mod alloc {
	pub use std::boxed;
	pub use std::vec;
	pub use std::string;
	pub use std::borrow;
	pub use std::collections;
	pub use std::sync;
	pub use std::rc;
}

mod codec;
mod compact;
mod joiner;
mod keyedvec;
#[cfg(feature = "bit-vec")]
mod bit_vec;
#[cfg(feature = "generic-array")]
mod generic_array;
mod decode_all;
mod depth_limit;
mod encode_append;
mod encode_like;

pub use self::codec::{
	Input, Output, Error, Decode, Encode, Codec, EncodeAsRef, WrapperTypeEncode,
	OptionBool, DecodeLength, FullCodec, FullEncode,
};
#[cfg(feature = "std")]
pub use self::codec::IoReader;
pub use self::compact::{Compact, HasCompact, CompactAs, CompactLen};
pub use self::joiner::Joiner;
pub use self::keyedvec::KeyedVec;
pub use self::decode_all::DecodeAll;
pub use self::depth_limit::DecodeLimit;
pub use self::encode_append::EncodeAppend;
pub use self::encode_like::{EncodeLike, Ref};