Files
addr2line
ahash
aho_corasick
arrayref
arrayvec
artemis_asset
artemis_core
artemis_erc20_app
artemis_eth_app
artemis_ethereum
backtrace
base58
bip39
bitmask
bitvec
blake2_rfc
block_buffer
block_padding
byte_slice_cast
byte_tools
byteorder
cfg_if
clear_on_drop
const_random
const_random_macro
constant_time_eq
crunchy
crypto_mac
curve25519_dalek
derive_more
digest
ed25519_dalek
either
environmental
ethabi_decode
ethbloom
ethereum_types
failure
failure_derive
fake_simd
fixed_hash
frame_metadata
frame_support
frame_support_procedural
frame_support_procedural_tools
frame_support_procedural_tools_derive
frame_system
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
generic_array
getrandom
gimli
hash256_std_hasher
hash_db
hashbrown
hex
hex_literal
hmac
hmac_drbg
impl_codec
impl_rlp
impl_serde
impl_trait_for_tuples
inflector
cases
camelcase
case
classcase
kebabcase
pascalcase
screamingsnakecase
sentencecase
snakecase
tablecase
titlecase
traincase
numbers
deordinalize
ordinalize
string
constants
deconstantize
demodulize
pluralize
singularize
suffix
foreignkey
integer_sqrt
itertools
keccak
lazy_static
libc
lock_api
log
memchr
memory_db
memory_units
merlin
nodrop
num_bigint
num_cpus
num_integer
num_rational
num_traits
object
once_cell
opaque_debug
pallet_bridge
pallet_verifier
parity_scale_codec
parity_scale_codec_derive
parity_util_mem
parity_util_mem_derive
parity_wasm
parking_lot
parking_lot_core
paste
paste_impl
pbkdf2
pin_project
pin_project_internal
pin_utils
ppv_lite86
primitive_types
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
radium
rand
rand_chacha
rand_core
rand_pcg
ref_cast
ref_cast_impl
regex
regex_syntax
rental
rental_impl
rlp
rustc_demangle
rustc_hash
rustc_hex
schnorrkel
scopeguard
secp256k1
serde
serde_derive
sha2
slab
smallvec
sp_application_crypto
sp_arithmetic
sp_core
sp_debug_derive
sp_externalities
sp_inherents
sp_io
sp_panic_handler
sp_runtime
sp_runtime_interface
sp_runtime_interface_proc_macro
sp_state_machine
sp_std
sp_storage
sp_tracing
sp_trie
sp_version
sp_wasm_interface
stable_deref_trait
static_assertions
substrate_bip39
subtle
syn
synstructure
thread_local
tiny_keccak
toml
tracing
tracing_attributes
tracing_core
trie_db
trie_root
twox_hash
typenum
uint
unicode_normalization
unicode_xid
wasmi
wasmi_validation
zeroize
zeroize_derive
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
// This file is part of Substrate.

// Copyright (C) 2019-2020 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Substrate runtime interface
//!
//! This crate provides types, traits and macros around runtime interfaces. A runtime interface is
//! a fixed interface between a Substrate runtime and a Substrate node. For a native runtime the
//! interface maps to a direct function call of the implementation. For a wasm runtime the interface
//! maps to an external function call. These external functions are exported by the wasm executor
//! and they map to the same implementation as the native calls.
//!
//! # Using a type in a runtime interface
//!
//! Any type that should be used in a runtime interface as argument or return value needs to
//! implement [`RIType`]. The associated type [`FFIType`](RIType::FFIType) is the type that is used
//! in the FFI function to represent the actual type. For example `[T]` is represented by an `u64`.
//! The slice pointer and the length will be mapped to an `u64` value. For more information see
//! this [table](#ffi-type-and-conversion). The FFI function definition is used when calling from
//! the wasm runtime into the node.
//!
//! Traits are used to convert from a type to the corresponding [`RIType::FFIType`].
//! Depending on where and how a type should be used in a function signature, a combination of the
//! following traits need to be implemented:
//!
//! 1. Pass as function argument: [`wasm::IntoFFIValue`] and [`host::FromFFIValue`]
//! 2. As function return value: [`wasm::FromFFIValue`] and [`host::IntoFFIValue`]
//! 3. Pass as mutable function argument: [`host::IntoPreallocatedFFIValue`]
//!
//! The traits are implemented for most of the common types like `[T]`, `Vec<T>`, arrays and
//! primitive types.
//!
//! For custom types, we provide the [`PassBy`](pass_by::PassBy) trait and strategies that define
//! how a type is passed between the wasm runtime and the node. Each strategy also provides a derive
//! macro to simplify the implementation.
//!
//! # Performance
//!
//! To not waste any more performance when calling into the node, not all types are SCALE encoded
//! when being passed as arguments between the wasm runtime and the node. For most types that
//! are raw bytes like `Vec<u8>`, `[u8]` or `[u8; N]` we pass them directly, without SCALE encoding
//! them in front of. The implementation of [`RIType`] each type provides more information on how
//! the data is passed.
//!
//! # Declaring a runtime interface
//!
//! Declaring a runtime interface is similar to declaring a trait in Rust:
//!
//! ```
//! #[sp_runtime_interface::runtime_interface]
//! trait RuntimeInterface {
//!     fn some_function(value: &[u8]) -> bool {
//!         value.iter().all(|v| *v > 125)
//!     }
//! }
//! ```
//!
//! For more information on declaring a runtime interface, see
//! [`#[runtime_interface]`](attr.runtime_interface.html).
//!
//! # FFI type and conversion
//!
//! The following table documents how values of types are passed between the wasm and
//! the host side and how they are converted into the corresponding type.
//!
//! | Type | FFI type | Conversion |
//! |----|----|----|
//! | `u8` | `u8` | `Identity` |
//! | `u16` | `u16` | `Identity` |
//! | `u32` | `u32` | `Identity` |
//! | `u64` | `u64` | `Identity` |
//! | `i128` | `u32` | `v.as_ptr()` (pointer to a 16 byte array) |
//! | `i8` | `i8` | `Identity` |
//! | `i16` | `i16` | `Identity` |
//! | `i32` | `i32` | `Identity` |
//! | `i64` | `i64` | `Identity` |
//! | `u128` | `u32` | `v.as_ptr()` (pointer to a 16 byte array) |
//! | `bool` | `u8` | `if v { 1 } else { 0 }` |
//! | `&str` | `u64` | <code>v.len() 32bit << 32 &#124; v.as_ptr() 32bit</code> |
//! | `&[u8]` | `u64` | <code>v.len() 32bit << 32 &#124; v.as_ptr() 32bit</code> |
//! | `Vec<u8>` | `u64` | <code>v.len() 32bit << 32 &#124; v.as_ptr() 32bit</code> |
//! | `Vec<T> where T: Encode` | `u64` | `let e = v.encode();`<br><br><code>e.len() 32bit << 32 &#124; e.as_ptr() 32bit</code> |
//! | `&[T] where T: Encode` | `u64` | `let e = v.encode();`<br><br><code>e.len() 32bit << 32 &#124; e.as_ptr() 32bit</code> |
//! | `[u8; N]` | `u32` | `v.as_ptr()` |
//! | `*const T` | `u32` | `Identity` |
//! | `Option<T>` | `u64` | `let e = v.encode();`<br><br><code>e.len() 32bit << 32 &#124; e.as_ptr() 32bit</code> |
//! | [`T where T: PassBy<PassBy=Inner>`](pass_by::Inner) | Depends on inner | Depends on inner |
//! | [`T where T: PassBy<PassBy=Codec>`](pass_by::Codec) | `u64`| <code>v.len() 32bit << 32 &#124; v.as_ptr() 32bit</code> |
//!
//! `Identity` means that the value is converted directly into the corresponding FFI type.

#![cfg_attr(not(feature = "std"), no_std)]

extern crate self as sp_runtime_interface;

#[doc(hidden)]
#[cfg(feature = "std")]
pub use sp_wasm_interface;

#[doc(hidden)]
pub use sp_tracing;

#[doc(hidden)]
pub use sp_std;

/// Attribute macro for transforming a trait declaration into a runtime interface.
///
/// A runtime interface is a fixed interface between a Substrate compatible runtime and the native
/// node. This interface is callable from a native and a wasm runtime. The macro will generate the
/// corresponding code for the native implementation and the code for calling from the wasm
/// side to the native implementation.
///
/// The macro expects the runtime interface declaration as trait declaration:
///
/// ```
/// # use sp_runtime_interface::runtime_interface;
///
/// #[runtime_interface]
/// trait Interface {
///     /// A function that can be called from native/wasm.
///     ///
///     /// The implementation given to this function is only compiled on native.
///     fn call(data: &[u8]) -> Vec<u8> {
///         // Here you could call some rather complex code that only compiles on native or
///         // is way faster in native than executing it in wasm.
///         Vec::new()
///     }
///     /// Call function, but different version.
///     ///
///     /// For new runtimes, only function with latest version is reachable.
///     /// But old version (above) is still accessible for old runtimes.
///     /// Default version is 1.
///     #[version(2)]
///     fn call(data: &[u8]) -> Vec<u8> {
///         // Here you could call some rather complex code that only compiles on native or
///         // is way faster in native than executing it in wasm.
///         [17].to_vec()
///     }
///
///     /// A function can take a `&self` or `&mut self` argument to get access to the
///     /// `Externalities`. (The generated method does not require
///     /// this argument, so the function can be called just with the `optional` argument)
///     fn set_or_clear(&mut self, optional: Option<Vec<u8>>) {
///         match optional {
///             Some(value) => self.set_storage([1, 2, 3, 4].to_vec(), value),
///             None => self.clear_storage(&[1, 2, 3, 4]),
///         }
///     }
/// }
/// ```
///
///
/// The given example will generate roughly the following code for native:
///
/// ```
/// // The name of the trait is converted to snake case and used as mod name.
/// //
/// // Be aware that this module is not `public`, the visibility of the module is determined based
/// // on the visibility of the trait declaration.
/// mod interface {
///     trait Interface {
///         fn call_version_1(data: &[u8]) -> Vec<u8>;
///         fn call_version_2(data: &[u8]) -> Vec<u8>;
///         fn set_or_clear_version_1(&mut self, optional: Option<Vec<u8>>);
///     }
///
///     impl Interface for &mut dyn sp_externalities::Externalities {
///         fn call_version_1(data: &[u8]) -> Vec<u8> { Vec::new() }
///         fn call_version_2(data: &[u8]) -> Vec<u8> { [17].to_vec() }
///         fn set_or_clear_version_1(&mut self, optional: Option<Vec<u8>>) {
///             match optional {
///                 Some(value) => self.set_storage([1, 2, 3, 4].to_vec(), value),
///                 None => self.clear_storage(&[1, 2, 3, 4]),
///             }
///         }
///     }
///
///     pub fn call(data: &[u8]) -> Vec<u8> {
///         // only latest version is exposed
///         call_version_2(data)
///     }
///
///     fn call_version_1(data: &[u8]) -> Vec<u8> {
///         <&mut dyn sp_externalities::Externalities as Interface>::call_version_1(data)
///     }
///
///     fn call_version_2(data: &[u8]) -> Vec<u8> {
///         <&mut dyn sp_externalities::Externalities as Interface>::call_version_2(data)
///     }
///
///     pub fn set_or_clear(optional: Option<Vec<u8>>) {
///         set_or_clear_version_1(optional)
///     }
///
///     fn set_or_clear_version_1(optional: Option<Vec<u8>>) {
///         sp_externalities::with_externalities(|mut ext| Interface::set_or_clear_version_1(&mut ext, optional))
///             .expect("`set_or_clear` called outside of an Externalities-provided environment.")
///     }
///
///     /// This type implements the `HostFunctions` trait (from `sp-wasm-interface`) and
///     /// provides the host implementation for the wasm side. The host implementation converts the
///     /// arguments from wasm to native and calls the corresponding native function.
///     ///
///     /// This type needs to be passed to the wasm executor, so that the host functions will be
///     /// registered in the executor.
///     pub struct HostFunctions;
/// }
/// ```
///
///
/// The given example will generate roughly the following code for wasm:
///
/// ```
/// mod interface {
///     mod extern_host_functions_impls {
///         extern "C" {
///             /// Every function is exported as `ext_TRAIT_NAME_FUNCTION_NAME_version_VERSION`.
///             ///
///             /// `TRAIT_NAME` is converted into snake case.
///             ///
///             /// The type for each argument of the exported function depends on
///             /// `<ARGUMENT_TYPE as RIType>::FFIType`.
///             ///
///             /// `data` holds the pointer and the length to the `[u8]` slice.
///             pub fn ext_Interface_call_version_1(data: u64) -> u64;
///             /// `optional` holds the pointer and the length of the encoded value.
///             pub fn ext_Interface_set_or_clear_version_1(optional: u64);
///         }
///     }
///
///     /// The type is actually `ExchangeableFunction` (from `sp-runtime-interface`).
///     ///
///     /// This can be used to replace the implementation of the `call` function.
///     /// Instead of calling into the host, the callee will automatically call the other
///     /// implementation.
///     ///
///     /// To replace the implementation:
///     ///
///     /// `host_call.replace_implementation(some_other_impl)`
///     pub static host_call: () = ();
///     pub static host_set_or_clear: () = ();
///
///     pub fn call(data: &[u8]) -> Vec<u8> {
///         // This is the actual call: `host_call.get()(data)`
///         //
///         // But that does not work for several reasons in this example, so we just return an
///         // empty vector.
///         Vec::new()
///     }
///
///     pub fn set_or_clear(optional: Option<Vec<u8>>) {
///         // Same as above
///     }
/// }
/// ```
///
/// # Argument types
///
/// The macro supports any kind of argument type, as long as it implements [`RIType`] and the
/// required `FromFFIValue`/`IntoFFIValue`. The macro will convert each
/// argument to the corresponding FFI representation and will call into the host using this FFI
/// representation. On the host each argument is converted back to the native representation and
/// the native implementation is called. Any return value is handled in the same way.
///
/// # Wasm only interfaces
///
/// Some interfaces are only required from within the wasm runtime e.g. the allocator interface.
/// To support this, the macro can be called like `#[runtime_interface(wasm_only)]`. This instructs
/// the macro to make two significant changes to the generated code:
///
/// 1. The generated functions are not callable from the native side.
/// 2. The trait as shown above is not implemented for `Externalities` and is instead implemented
///    for `FunctionExecutor` (from `sp-wasm-interface`).
pub use sp_runtime_interface_proc_macro::runtime_interface;

#[doc(hidden)]
#[cfg(feature = "std")]
pub use sp_externalities::{
	set_and_run_with_externalities, with_externalities, Externalities, ExternalitiesExt, ExtensionStore,
};

#[doc(hidden)]
pub use codec;

pub(crate) mod impls;
#[cfg(feature = "std")]
pub mod host;
#[cfg(any(not(feature = "std"), doc))]
pub mod wasm;
pub mod pass_by;

mod util;

pub use util::unpack_ptr_and_len;

/// Something that can be used by the runtime interface as type to communicate between wasm and the
/// host.
///
/// Every type that should be used in a runtime interface function signature needs to implement
/// this trait.
pub trait RIType {
	/// The ffi type that is used to represent `Self`.
	#[cfg(feature = "std")]
	type FFIType: sp_wasm_interface::IntoValue + sp_wasm_interface::TryFromValue;
	#[cfg(not(feature = "std"))]
	type FFIType;
}

/// A pointer that can be used in a runtime interface function signature.
#[cfg(not(feature = "std"))]
pub type Pointer<T> = *mut T;

/// A pointer that can be used in a runtime interface function signature.
#[cfg(feature = "std")]
pub type Pointer<T> = sp_wasm_interface::Pointer<T>;