Files
addr2line
ahash
aho_corasick
arrayref
arrayvec
artemis_asset
artemis_core
artemis_erc20_app
artemis_eth_app
artemis_ethereum
backtrace
base58
bip39
bitmask
bitvec
blake2_rfc
block_buffer
block_padding
byte_slice_cast
byte_tools
byteorder
cfg_if
clear_on_drop
const_random
const_random_macro
constant_time_eq
crunchy
crypto_mac
curve25519_dalek
derive_more
digest
ed25519_dalek
either
environmental
ethabi_decode
ethbloom
ethereum_types
failure
failure_derive
fake_simd
fixed_hash
frame_metadata
frame_support
frame_support_procedural
frame_support_procedural_tools
frame_support_procedural_tools_derive
frame_system
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
generic_array
getrandom
gimli
hash256_std_hasher
hash_db
hashbrown
hex
hex_literal
hmac
hmac_drbg
impl_codec
impl_rlp
impl_serde
impl_trait_for_tuples
inflector
cases
camelcase
case
classcase
kebabcase
pascalcase
screamingsnakecase
sentencecase
snakecase
tablecase
titlecase
traincase
numbers
deordinalize
ordinalize
string
constants
deconstantize
demodulize
pluralize
singularize
suffix
foreignkey
integer_sqrt
itertools
keccak
lazy_static
libc
lock_api
log
memchr
memory_db
memory_units
merlin
nodrop
num_bigint
num_cpus
num_integer
num_rational
num_traits
object
once_cell
opaque_debug
pallet_bridge
pallet_verifier
parity_scale_codec
parity_scale_codec_derive
parity_util_mem
parity_util_mem_derive
parity_wasm
parking_lot
parking_lot_core
paste
paste_impl
pbkdf2
pin_project
pin_project_internal
pin_utils
ppv_lite86
primitive_types
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
radium
rand
rand_chacha
rand_core
rand_pcg
ref_cast
ref_cast_impl
regex
regex_syntax
rental
rental_impl
rlp
rustc_demangle
rustc_hash
rustc_hex
schnorrkel
scopeguard
secp256k1
serde
serde_derive
sha2
slab
smallvec
sp_application_crypto
sp_arithmetic
sp_core
sp_debug_derive
sp_externalities
sp_inherents
sp_io
sp_panic_handler
sp_runtime
sp_runtime_interface
sp_runtime_interface_proc_macro
sp_state_machine
sp_std
sp_storage
sp_tracing
sp_trie
sp_version
sp_wasm_interface
stable_deref_trait
static_assertions
substrate_bip39
subtle
syn
synstructure
thread_local
tiny_keccak
toml
tracing
tracing_attributes
tracing_core
trie_db
trie_root
twox_hash
typenum
uint
unicode_normalization
unicode_xid
wasmi
wasmi_validation
zeroize
zeroize_derive
 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
// Copyright 2018 Developers of the Rand project.
// Copyright 2016-2017 The Rust Project Developers.
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// https://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.

//! The Cauchy distribution.
#![allow(deprecated)]
#![allow(clippy::all)]

use crate::distributions::Distribution;
use crate::Rng;
use std::f64::consts::PI;

/// The Cauchy distribution `Cauchy(median, scale)`.
///
/// This distribution has a density function:
/// `f(x) = 1 / (pi * scale * (1 + ((x - median) / scale)^2))`
#[deprecated(since = "0.7.0", note = "moved to rand_distr crate")]
#[derive(Clone, Copy, Debug)]
pub struct Cauchy {
    median: f64,
    scale: f64,
}

impl Cauchy {
    /// Construct a new `Cauchy` with the given shape parameters
    /// `median` the peak location and `scale` the scale factor.
    /// Panics if `scale <= 0`.
    pub fn new(median: f64, scale: f64) -> Cauchy {
        assert!(scale > 0.0, "Cauchy::new called with scale factor <= 0");
        Cauchy { median, scale }
    }
}

impl Distribution<f64> for Cauchy {
    fn sample<R: Rng + ?Sized>(&self, rng: &mut R) -> f64 {
        // sample from [0, 1)
        let x = rng.gen::<f64>();
        // get standard cauchy random number
        // note that π/2 is not exactly representable, even if x=0.5 the result is finite
        let comp_dev = (PI * x).tan();
        // shift and scale according to parameters
        let result = self.median + self.scale * comp_dev;
        result
    }
}

#[cfg(test)]
mod test {
    use super::Cauchy;
    use crate::distributions::Distribution;

    fn median(mut numbers: &mut [f64]) -> f64 {
        sort(&mut numbers);
        let mid = numbers.len() / 2;
        numbers[mid]
    }

    fn sort(numbers: &mut [f64]) {
        numbers.sort_by(|a, b| a.partial_cmp(b).unwrap());
    }

    #[test]
    fn test_cauchy_averages() {
        // NOTE: given that the variance and mean are undefined,
        // this test does not have any rigorous statistical meaning.
        let cauchy = Cauchy::new(10.0, 5.0);
        let mut rng = crate::test::rng(123);
        let mut numbers: [f64; 1000] = [0.0; 1000];
        let mut sum = 0.0;
        for i in 0..1000 {
            numbers[i] = cauchy.sample(&mut rng);
            sum += numbers[i];
        }
        let median = median(&mut numbers);
        println!("Cauchy median: {}", median);
        assert!((median - 10.0).abs() < 0.4); // not 100% certain, but probable enough
        let mean = sum / 1000.0;
        println!("Cauchy mean: {}", mean);
        // for a Cauchy distribution the mean should not converge
        assert!((mean - 10.0).abs() > 0.4); // not 100% certain, but probable enough
    }

    #[test]
    #[should_panic]
    fn test_cauchy_invalid_scale_zero() {
        Cauchy::new(0.0, 0.0);
    }

    #[test]
    #[should_panic]
    fn test_cauchy_invalid_scale_neg() {
        Cauchy::new(0.0, -10.0);
    }
}