Files
addr2line
ahash
aho_corasick
arrayref
arrayvec
artemis_asset
artemis_core
artemis_erc20_app
artemis_eth_app
artemis_ethereum
backtrace
base58
bip39
bitmask
bitvec
blake2_rfc
block_buffer
block_padding
byte_slice_cast
byte_tools
byteorder
cfg_if
clear_on_drop
const_random
const_random_macro
constant_time_eq
crunchy
crypto_mac
curve25519_dalek
derive_more
digest
ed25519_dalek
either
environmental
ethabi_decode
ethbloom
ethereum_types
failure
failure_derive
fake_simd
fixed_hash
frame_metadata
frame_support
frame_support_procedural
frame_support_procedural_tools
frame_support_procedural_tools_derive
frame_system
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
generic_array
getrandom
gimli
hash256_std_hasher
hash_db
hashbrown
hex
hex_literal
hmac
hmac_drbg
impl_codec
impl_rlp
impl_serde
impl_trait_for_tuples
inflector
cases
camelcase
case
classcase
kebabcase
pascalcase
screamingsnakecase
sentencecase
snakecase
tablecase
titlecase
traincase
numbers
deordinalize
ordinalize
string
constants
deconstantize
demodulize
pluralize
singularize
suffix
foreignkey
integer_sqrt
itertools
keccak
lazy_static
libc
lock_api
log
memchr
memory_db
memory_units
merlin
nodrop
num_bigint
num_cpus
num_integer
num_rational
num_traits
object
once_cell
opaque_debug
pallet_bridge
pallet_verifier
parity_scale_codec
parity_scale_codec_derive
parity_util_mem
parity_util_mem_derive
parity_wasm
parking_lot
parking_lot_core
paste
paste_impl
pbkdf2
pin_project
pin_project_internal
pin_utils
ppv_lite86
primitive_types
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
radium
rand
rand_chacha
rand_core
rand_pcg
ref_cast
ref_cast_impl
regex
regex_syntax
rental
rental_impl
rlp
rustc_demangle
rustc_hash
rustc_hex
schnorrkel
scopeguard
secp256k1
serde
serde_derive
sha2
slab
smallvec
sp_application_crypto
sp_arithmetic
sp_core
sp_debug_derive
sp_externalities
sp_inherents
sp_io
sp_panic_handler
sp_runtime
sp_runtime_interface
sp_runtime_interface_proc_macro
sp_state_machine
sp_std
sp_storage
sp_tracing
sp_trie
sp_version
sp_wasm_interface
stable_deref_trait
static_assertions
substrate_bip39
subtle
syn
synstructure
thread_local
tiny_keccak
toml
tracing
tracing_attributes
tracing_core
trie_db
trie_root
twox_hash
typenum
uint
unicode_normalization
unicode_xid
wasmi
wasmi_validation
zeroize
zeroize_derive
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
#![no_std]
pub extern crate byteorder;
pub extern crate block_padding;
pub extern crate generic_array;
extern crate byte_tools;

use byteorder::{ByteOrder, BE};
use byte_tools::zero;
use block_padding::{Padding, PadError};
use generic_array::{GenericArray, ArrayLength};
use core::slice;

/// Buffer for block processing of data
#[derive(Clone, Default)]
pub struct BlockBuffer<BlockSize: ArrayLength<u8>>  {
    buffer: GenericArray<u8, BlockSize>,
    pos: usize,
}

#[inline(always)]
unsafe fn cast<N: ArrayLength<u8>>(block: &[u8]) -> &GenericArray<u8, N> {
    debug_assert_eq!(block.len(), N::to_usize());
    &*(block.as_ptr() as *const GenericArray<u8, N>)
}



impl<BlockSize: ArrayLength<u8>> BlockBuffer<BlockSize> {
    /// Process data in `input` in blocks of size `BlockSize` using function `f`.
    #[inline]
    pub fn input<F>(&mut self, mut input: &[u8], mut f: F)
        where F: FnMut(&GenericArray<u8, BlockSize>)
    {
        // If there is already data in the buffer, process it if we have
        // enough to complete the chunk.
        let rem = self.remaining();
        if self.pos != 0 && input.len() >= rem {
            let (l, r) = input.split_at(rem);
            input = r;
            self.buffer[self.pos..].copy_from_slice(l);
            self.pos = 0;
            f(&self.buffer);
        }

        // While we have at least a full buffer size chunks's worth of data,
        // process that data without copying it into the buffer
        while input.len() >= self.size() {
            let (block, r) = input.split_at(self.size());
            input = r;
            f(unsafe { cast(block) });
        }

        // Copy any remaining data into the buffer.
        self.buffer[self.pos..self.pos+input.len()].copy_from_slice(input);
        self.pos += input.len();
    }

    /*
    /// Process data in `input` in blocks of size `BlockSize` using function `f`, which accepts
    /// slice of blocks.
    #[inline]
    pub fn input2<F>(&mut self, mut input: &[u8], mut f: F)
        where F: FnMut(&[GenericArray<u8, BlockSize>])
    {
        // If there is already data in the buffer, process it if we have
        // enough to complete the chunk.
        let rem = self.remaining();
        if self.pos != 0 && input.len() >= rem {
            let (l, r) = input.split_at(rem);
            input = r;
            self.buffer[self.pos..].copy_from_slice(l);
            self.pos = 0;
            f(slice::from_ref(&self.buffer));
        }

        // While we have at least a full buffer size chunks's worth of data,
        // process it data without copying into the buffer
        let n_blocks = input.len()/self.size();
        let (left, right) = input.split_at(n_blocks*self.size());
        // safe because we guarantee that `blocks` does not point outside of `input` 
        let blocks = unsafe {
            slice::from_raw_parts(
                left.as_ptr() as *const GenericArray<u8, BlockSize>,
                n_blocks,
            )
        };
        f(blocks);

        // Copy remaining data into the buffer.
        self.buffer[self.pos..self.pos+right.len()].copy_from_slice(right);
        self.pos += right.len();
    }
    */

    /// Variant that doesn't flush the buffer until there's additional
    /// data to be processed. Suitable for tweakable block ciphers
    /// like Threefish that need to know whether a block is the *last*
    /// data block before processing it.
    #[inline]
    pub fn input_lazy<F>(&mut self, mut input: &[u8], mut f: F)
        where F: FnMut(&GenericArray<u8, BlockSize>)
    {
        let rem = self.remaining();
        if self.pos != 0 && input.len() > rem {
            let (l, r) = input.split_at(rem);
            input = r;
            self.buffer[self.pos..].copy_from_slice(l);
            self.pos = 0;
            f(&self.buffer);
        }

        while input.len() > self.size() {
            let (block, r) = input.split_at(self.size());
            input = r;
            f(unsafe { cast(block) });
        }

        self.buffer[self.pos..self.pos+input.len()].copy_from_slice(input);
        self.pos += input.len();
    }

    /// Pad buffer with `prefix` and make sure that internall buffer
    /// has at least `up_to` free bytes. All remaining bytes get
    /// zeroed-out.
    #[inline]
    fn digest_pad<F>(&mut self, up_to: usize, f: &mut F)
        where F: FnMut(&GenericArray<u8, BlockSize>)
    {
        if self.pos == self.size() {
            f(&self.buffer);
            self.pos = 0;
        }
        self.buffer[self.pos] = 0x80;
        self.pos += 1;

        zero(&mut self.buffer[self.pos..]);

        if self.remaining() < up_to {
            f(&self.buffer);
            zero(&mut self.buffer[..self.pos]);
        }
    }

    /// Pad message with 0x80, zeros and 64-bit message length
    /// in a byte order specified by `B`
    #[inline]
    pub fn len64_padding<B, F>(&mut self, data_len: u64, mut f: F)
        where B: ByteOrder, F: FnMut(&GenericArray<u8, BlockSize>)
    {
        // TODO: replace `F` with `impl Trait` on MSRV bump
        self.digest_pad(8, &mut f);
        let s = self.size();
        B::write_u64(&mut self.buffer[s-8..], data_len);
        f(&self.buffer);
        self.pos = 0;
    }


    /// Pad message with 0x80, zeros and 128-bit message length
    /// in the big-endian byte order
    #[inline]
    pub fn len128_padding_be<F>(&mut self, hi: u64, lo: u64, mut f: F)
        where F: FnMut(&GenericArray<u8, BlockSize>)
    {
        // TODO: on MSRV bump replace `F` with `impl Trait`, use `u128`, add `B`
        self.digest_pad(16, &mut f);
        let s = self.size();
        BE::write_u64(&mut self.buffer[s-16..s-8], hi);
        BE::write_u64(&mut self.buffer[s-8..], lo);
        f(&self.buffer);
        self.pos = 0;
    }

    /// Pad message with a given padding `P`
    ///
    /// Returns `PadError` if internall buffer is full, which can only happen if
    /// `input_lazy` was used.
    #[inline]
    pub fn pad_with<P: Padding>(&mut self)
        -> Result<&mut GenericArray<u8, BlockSize>, PadError>
    {
        P::pad_block(&mut self.buffer[..], self.pos)?;
        self.pos = 0;
        Ok(&mut self.buffer)
    }

    /// Return size of the internall buffer in bytes
    #[inline]
    pub fn size(&self) -> usize {
        BlockSize::to_usize()
    }

    /// Return current cursor position
    #[inline]
    pub fn position(&self) -> usize {
        self.pos
    }

    /// Return number of remaining bytes in the internall buffer
    #[inline]
    pub fn remaining(&self) -> usize {
        self.size() - self.pos
    }

    /// Reset buffer by setting cursor position to zero
    #[inline]
    pub fn reset(&mut self)  {
        self.pos = 0
    }
}