Files
addr2line
ahash
aho_corasick
arrayref
arrayvec
artemis_asset
artemis_core
artemis_erc20_app
artemis_eth_app
artemis_ethereum
backtrace
base58
bip39
bitmask
bitvec
blake2_rfc
block_buffer
block_padding
byte_slice_cast
byte_tools
byteorder
cfg_if
clear_on_drop
const_random
const_random_macro
constant_time_eq
crunchy
crypto_mac
curve25519_dalek
derive_more
digest
ed25519_dalek
either
environmental
ethabi_decode
ethbloom
ethereum_types
failure
failure_derive
fake_simd
fixed_hash
frame_metadata
frame_support
frame_support_procedural
frame_support_procedural_tools
frame_support_procedural_tools_derive
frame_system
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
generic_array
getrandom
gimli
hash256_std_hasher
hash_db
hashbrown
hex
hex_literal
hmac
hmac_drbg
impl_codec
impl_rlp
impl_serde
impl_trait_for_tuples
inflector
cases
camelcase
case
classcase
kebabcase
pascalcase
screamingsnakecase
sentencecase
snakecase
tablecase
titlecase
traincase
numbers
deordinalize
ordinalize
string
constants
deconstantize
demodulize
pluralize
singularize
suffix
foreignkey
integer_sqrt
itertools
keccak
lazy_static
libc
lock_api
log
memchr
memory_db
memory_units
merlin
nodrop
num_bigint
num_cpus
num_integer
num_rational
num_traits
object
once_cell
opaque_debug
pallet_bridge
pallet_verifier
parity_scale_codec
parity_scale_codec_derive
parity_util_mem
parity_util_mem_derive
parity_wasm
parking_lot
parking_lot_core
paste
paste_impl
pbkdf2
pin_project
pin_project_internal
pin_utils
ppv_lite86
primitive_types
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
radium
rand
rand_chacha
rand_core
rand_pcg
ref_cast
ref_cast_impl
regex
regex_syntax
rental
rental_impl
rlp
rustc_demangle
rustc_hash
rustc_hex
schnorrkel
scopeguard
secp256k1
serde
serde_derive
sha2
slab
smallvec
sp_application_crypto
sp_arithmetic
sp_core
sp_debug_derive
sp_externalities
sp_inherents
sp_io
sp_panic_handler
sp_runtime
sp_runtime_interface
sp_runtime_interface_proc_macro
sp_state_machine
sp_std
sp_storage
sp_tracing
sp_trie
sp_version
sp_wasm_interface
stable_deref_trait
static_assertions
substrate_bip39
subtle
syn
synstructure
thread_local
tiny_keccak
toml
tracing
tracing_attributes
tracing_core
trie_db
trie_root
twox_hash
typenum
uint
unicode_normalization
unicode_xid
wasmi
wasmi_validation
zeroize
zeroize_derive
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
//! Futures-powered synchronization primitives.

#[cfg(feature = "bilock")]
use futures_core::future::Future;
use futures_core::task::{Context, Poll, Waker};
use core::cell::UnsafeCell;
use core::fmt;
use core::ops::{Deref, DerefMut};
use core::pin::Pin;
use core::sync::atomic::AtomicUsize;
use core::sync::atomic::Ordering::SeqCst;
use alloc::boxed::Box;
use alloc::sync::Arc;

/// A type of futures-powered synchronization primitive which is a mutex between
/// two possible owners.
///
/// This primitive is not as generic as a full-blown mutex but is sufficient for
/// many use cases where there are only two possible owners of a resource. The
/// implementation of `BiLock` can be more optimized for just the two possible
/// owners.
///
/// Note that it's possible to use this lock through a poll-style interface with
/// the `poll_lock` method but you can also use it as a future with the `lock`
/// method that consumes a `BiLock` and returns a future that will resolve when
/// it's locked.
///
/// A `BiLock` is typically used for "split" operations where data which serves
/// two purposes wants to be split into two to be worked with separately. For
/// example a TCP stream could be both a reader and a writer or a framing layer
/// could be both a stream and a sink for messages. A `BiLock` enables splitting
/// these two and then using each independently in a futures-powered fashion.
///
/// This type is only available when the `bilock` feature of this
/// library is activated.
#[derive(Debug)]
pub struct BiLock<T> {
    arc: Arc<Inner<T>>,
}

#[derive(Debug)]
struct Inner<T> {
    state: AtomicUsize,
    value: Option<UnsafeCell<T>>,
}

unsafe impl<T: Send> Send for Inner<T> {}
unsafe impl<T: Send> Sync for Inner<T> {}

impl<T> BiLock<T> {
    /// Creates a new `BiLock` protecting the provided data.
    ///
    /// Two handles to the lock are returned, and these are the only two handles
    /// that will ever be available to the lock. These can then be sent to separate
    /// tasks to be managed there.
    ///
    /// The data behind the bilock is considered to be pinned, which allows `Pin`
    /// references to locked data. However, this means that the locked value
    /// will only be available through `Pin<&mut T>` (not `&mut T`) unless `T` is `Unpin`.
    /// Similarly, reuniting the lock and extracting the inner value is only
    /// possible when `T` is `Unpin`.
    pub fn new(t: T) -> (BiLock<T>, BiLock<T>) {
        let arc = Arc::new(Inner {
            state: AtomicUsize::new(0),
            value: Some(UnsafeCell::new(t)),
        });

        (BiLock { arc: arc.clone() }, BiLock { arc })
    }

    /// Attempt to acquire this lock, returning `Pending` if it can't be
    /// acquired.
    ///
    /// This function will acquire the lock in a nonblocking fashion, returning
    /// immediately if the lock is already held. If the lock is successfully
    /// acquired then `Poll::Ready` is returned with a value that represents
    /// the locked value (and can be used to access the protected data). The
    /// lock is unlocked when the returned `BiLockGuard` is dropped.
    ///
    /// If the lock is already held then this function will return
    /// `Poll::Pending`. In this case the current task will also be scheduled
    /// to receive a notification when the lock would otherwise become
    /// available.
    ///
    /// # Panics
    ///
    /// This function will panic if called outside the context of a future's
    /// task.
    pub fn poll_lock(&self, cx: &mut Context<'_>) -> Poll<BiLockGuard<'_, T>> {
        let mut waker = None;
        loop {
            match self.arc.state.swap(1, SeqCst) {
                // Woohoo, we grabbed the lock!
                0 => return Poll::Ready(BiLockGuard { bilock: self }),

                // Oops, someone else has locked the lock
                1 => {}

                // A task was previously blocked on this lock, likely our task,
                // so we need to update that task.
                n => unsafe {
                    let mut prev = Box::from_raw(n as *mut Waker);
                    *prev = cx.waker().clone();
                    waker = Some(prev);
                }
            }

            // type ascription for safety's sake!
            let me: Box<Waker> = waker.take().unwrap_or_else(||Box::new(cx.waker().clone()));
            let me = Box::into_raw(me) as usize;

            match self.arc.state.compare_exchange(1, me, SeqCst, SeqCst) {
                // The lock is still locked, but we've now parked ourselves, so
                // just report that we're scheduled to receive a notification.
                Ok(_) => return Poll::Pending,

                // Oops, looks like the lock was unlocked after our swap above
                // and before the compare_exchange. Deallocate what we just
                // allocated and go through the loop again.
                Err(0) => unsafe {
                    waker = Some(Box::from_raw(me as *mut Waker));
                },

                // The top of this loop set the previous state to 1, so if we
                // failed the CAS above then it's because the previous value was
                // *not* zero or one. This indicates that a task was blocked,
                // but we're trying to acquire the lock and there's only one
                // other reference of the lock, so it should be impossible for
                // that task to ever block itself.
                Err(n) => panic!("invalid state: {}", n),
            }
        }
    }

    /// Perform a "blocking lock" of this lock, consuming this lock handle and
    /// returning a future to the acquired lock.
    ///
    /// This function consumes the `BiLock<T>` and returns a sentinel future,
    /// `BiLockAcquire<T>`. The returned future will resolve to
    /// `BiLockAcquired<T>` which represents a locked lock similarly to
    /// `BiLockGuard<T>`.
    ///
    /// Note that the returned future will never resolve to an error.
    #[cfg(feature = "bilock")]
    pub fn lock(&self) -> BiLockAcquire<'_, T> {
        BiLockAcquire {
            bilock: self,
        }
    }

    /// Attempts to put the two "halves" of a `BiLock<T>` back together and
    /// recover the original value. Succeeds only if the two `BiLock<T>`s
    /// originated from the same call to `BiLock::new`.
    pub fn reunite(self, other: Self) -> Result<T, ReuniteError<T>>
    where
        T: Unpin,
    {
        if Arc::ptr_eq(&self.arc, &other.arc) {
            drop(other);
            let inner = Arc::try_unwrap(self.arc)
                .ok()
                .expect("futures: try_unwrap failed in BiLock<T>::reunite");
            Ok(unsafe { inner.into_value() })
        } else {
            Err(ReuniteError(self, other))
        }
    }

    fn unlock(&self) {
        match self.arc.state.swap(0, SeqCst) {
            // we've locked the lock, shouldn't be possible for us to see an
            // unlocked lock.
            0 => panic!("invalid unlocked state"),

            // Ok, no one else tried to get the lock, we're done.
            1 => {}

            // Another task has parked themselves on this lock, let's wake them
            // up as its now their turn.
            n => unsafe {
                Box::from_raw(n as *mut Waker).wake();
            }
        }
    }
}

impl<T: Unpin> Inner<T> {
    unsafe fn into_value(mut self) -> T {
        self.value.take().unwrap().into_inner()
    }
}

impl<T> Drop for Inner<T> {
    fn drop(&mut self) {
        assert_eq!(self.state.load(SeqCst), 0);
    }
}

/// Error indicating two `BiLock<T>`s were not two halves of a whole, and
/// thus could not be `reunite`d.
pub struct ReuniteError<T>(pub BiLock<T>, pub BiLock<T>);

impl<T> fmt::Debug for ReuniteError<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.debug_tuple("ReuniteError")
            .field(&"...")
            .finish()
    }
}

impl<T> fmt::Display for ReuniteError<T> {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        write!(f, "tried to reunite two BiLocks that don't form a pair")
    }
}

#[cfg(feature = "std")]
impl<T: core::any::Any> std::error::Error for ReuniteError<T> {}

/// Returned RAII guard from the `poll_lock` method.
///
/// This structure acts as a sentinel to the data in the `BiLock<T>` itself,
/// implementing `Deref` and `DerefMut` to `T`. When dropped, the lock will be
/// unlocked.
#[derive(Debug)]
pub struct BiLockGuard<'a, T> {
    bilock: &'a BiLock<T>,
}

impl<T> Deref for BiLockGuard<'_, T> {
    type Target = T;
    fn deref(&self) -> &T {
        unsafe { &*self.bilock.arc.value.as_ref().unwrap().get() }
    }
}

impl<T: Unpin> DerefMut for BiLockGuard<'_, T> {
    fn deref_mut(&mut self) -> &mut T {
        unsafe { &mut *self.bilock.arc.value.as_ref().unwrap().get() }
    }
}

impl<T> BiLockGuard<'_, T> {
    /// Get a mutable pinned reference to the locked value.
    pub fn as_pin_mut(&mut self) -> Pin<&mut T> {
        // Safety: we never allow moving a !Unpin value out of a bilock, nor
        // allow mutable access to it
        unsafe { Pin::new_unchecked(&mut *self.bilock.arc.value.as_ref().unwrap().get()) }
    }
}

impl<T> Drop for BiLockGuard<'_, T> {
    fn drop(&mut self) {
        self.bilock.unlock();
    }
}

/// Future returned by `BiLock::lock` which will resolve when the lock is
/// acquired.
#[cfg(feature = "bilock")]
#[must_use = "futures do nothing unless you `.await` or poll them"]
#[derive(Debug)]
pub struct BiLockAcquire<'a, T> {
    bilock: &'a BiLock<T>,
}

// Pinning is never projected to fields
#[cfg(feature = "bilock")]
impl<T> Unpin for BiLockAcquire<'_, T> {}

#[cfg(feature = "bilock")]
impl<'a, T> Future for BiLockAcquire<'a, T> {
    type Output = BiLockGuard<'a, T>;

    fn poll(self: Pin<&mut Self>, cx: &mut Context<'_>) -> Poll<Self::Output> {
        self.bilock.poll_lock(cx)
    }
}