Files
addr2line
ahash
aho_corasick
arrayref
arrayvec
artemis_asset
artemis_core
artemis_erc20_app
artemis_eth_app
artemis_ethereum
backtrace
base58
bip39
bitmask
bitvec
blake2_rfc
block_buffer
block_padding
byte_slice_cast
byte_tools
byteorder
cfg_if
clear_on_drop
const_random
const_random_macro
constant_time_eq
crunchy
crypto_mac
curve25519_dalek
derive_more
digest
ed25519_dalek
either
environmental
ethabi_decode
ethbloom
ethereum_types
failure
failure_derive
fake_simd
fixed_hash
frame_metadata
frame_support
frame_support_procedural
frame_support_procedural_tools
frame_support_procedural_tools_derive
frame_system
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
generic_array
getrandom
gimli
hash256_std_hasher
hash_db
hashbrown
hex
hex_literal
hmac
hmac_drbg
impl_codec
impl_rlp
impl_serde
impl_trait_for_tuples
inflector
cases
camelcase
case
classcase
kebabcase
pascalcase
screamingsnakecase
sentencecase
snakecase
tablecase
titlecase
traincase
numbers
deordinalize
ordinalize
string
constants
deconstantize
demodulize
pluralize
singularize
suffix
foreignkey
integer_sqrt
itertools
keccak
lazy_static
libc
lock_api
log
memchr
memory_db
memory_units
merlin
nodrop
num_bigint
num_cpus
num_integer
num_rational
num_traits
object
once_cell
opaque_debug
pallet_bridge
pallet_verifier
parity_scale_codec
parity_scale_codec_derive
parity_util_mem
parity_util_mem_derive
parity_wasm
parking_lot
parking_lot_core
paste
paste_impl
pbkdf2
pin_project
pin_project_internal
pin_utils
ppv_lite86
primitive_types
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
radium
rand
rand_chacha
rand_core
rand_pcg
ref_cast
ref_cast_impl
regex
regex_syntax
rental
rental_impl
rlp
rustc_demangle
rustc_hash
rustc_hex
schnorrkel
scopeguard
secp256k1
serde
serde_derive
sha2
slab
smallvec
sp_application_crypto
sp_arithmetic
sp_core
sp_debug_derive
sp_externalities
sp_inherents
sp_io
sp_panic_handler
sp_runtime
sp_runtime_interface
sp_runtime_interface_proc_macro
sp_state_machine
sp_std
sp_storage
sp_tracing
sp_trie
sp_version
sp_wasm_interface
stable_deref_trait
static_assertions
substrate_bip39
subtle
syn
synstructure
thread_local
tiny_keccak
toml
tracing
tracing_attributes
tracing_core
trie_db
trie_root
twox_hash
typenum
uint
unicode_normalization
unicode_xid
wasmi
wasmi_validation
zeroize
zeroize_derive
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
use alloc::{rc::Rc, string::ToString, vec::Vec};
use core::{
    cell::{Cell, RefCell},
    cmp, fmt,
    ops::Range,
    u32,
};
use memory_units::{Bytes, Pages, RoundUpTo};
use parity_wasm::elements::ResizableLimits;
use value::LittleEndianConvert;
use Error;

#[cfg(all(unix, not(feature = "vec_memory")))]
#[path = "mmap_bytebuf.rs"]
mod bytebuf;

#[cfg(any(not(unix), feature = "vec_memory"))]
#[path = "vec_bytebuf.rs"]
mod bytebuf;

use self::bytebuf::ByteBuf;

/// Size of a page of [linear memory][`MemoryInstance`] - 64KiB.
///
/// The size of a memory is always a integer multiple of a page size.
///
/// [`MemoryInstance`]: struct.MemoryInstance.html
pub const LINEAR_MEMORY_PAGE_SIZE: Bytes = Bytes(65536);

/// Reference to a memory (See [`MemoryInstance`] for details).
///
/// This reference has a reference-counting semantics.
///
/// [`MemoryInstance`]: struct.MemoryInstance.html
///
#[derive(Clone, Debug)]
pub struct MemoryRef(Rc<MemoryInstance>);

impl ::core::ops::Deref for MemoryRef {
    type Target = MemoryInstance;
    fn deref(&self) -> &MemoryInstance {
        &self.0
    }
}

/// Runtime representation of a linear memory (or `memory` for short).
///
/// A memory is a contiguous, mutable array of raw bytes. Wasm code can load and store values
/// from/to a linear memory at any byte address.
/// A trap occurs if an access is not within the bounds of the current memory size.
///
/// A memory is created with an initial size but can be grown dynamically.
/// The growth can be limited by specifying maximum size.
/// The size of a memory is always a integer multiple of a [page size][`LINEAR_MEMORY_PAGE_SIZE`] - 64KiB.
///
/// At the moment, wasm doesn't provide any way to shrink the memory.
///
/// [`LINEAR_MEMORY_PAGE_SIZE`]: constant.LINEAR_MEMORY_PAGE_SIZE.html
pub struct MemoryInstance {
    /// Memory limits.
    limits: ResizableLimits,
    /// Linear memory buffer with lazy allocation.
    buffer: RefCell<ByteBuf>,
    initial: Pages,
    current_size: Cell<usize>,
    maximum: Option<Pages>,
}

impl fmt::Debug for MemoryInstance {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        f.debug_struct("MemoryInstance")
            .field("limits", &self.limits)
            .field("buffer.len", &self.buffer.borrow().len())
            .field("maximum", &self.maximum)
            .field("initial", &self.initial)
            .finish()
    }
}

struct CheckedRegion {
    offset: usize,
    size: usize,
}

impl CheckedRegion {
    fn range(&self) -> Range<usize> {
        self.offset..self.offset + self.size
    }

    fn intersects(&self, other: &Self) -> bool {
        let low = cmp::max(self.offset, other.offset);
        let high = cmp::min(self.offset + self.size, other.offset + other.size);

        low < high
    }
}

impl MemoryInstance {
    /// Allocate a memory instance.
    ///
    /// The memory allocated with initial number of pages specified by `initial`.
    /// Minimal possible value for `initial` is 0 and maximum possible is `65536`.
    /// (Since maximum addressible memory is 2<sup>32</sup> = 4GiB = 65536 * [64KiB][`LINEAR_MEMORY_PAGE_SIZE`]).
    ///
    /// It is possible to limit maximum number of pages this memory instance can have by specifying
    /// `maximum`. If not specified, this memory instance would be able to allocate up to 4GiB.
    ///
    /// Allocated memory is always zeroed.
    ///
    /// # Errors
    ///
    /// Returns `Err` if:
    ///
    /// - `initial` is greater than `maximum`
    /// - either `initial` or `maximum` is greater than `65536`.
    ///
    /// [`LINEAR_MEMORY_PAGE_SIZE`]: constant.LINEAR_MEMORY_PAGE_SIZE.html
    pub fn alloc(initial: Pages, maximum: Option<Pages>) -> Result<MemoryRef, Error> {
        {
            use core::convert::TryInto;
            let initial_u32: u32 = initial.0.try_into().map_err(|_| {
                Error::Memory(format!("initial ({}) can't be coerced to u32", initial.0))
            })?;
            let maximum_u32: Option<u32> = match maximum {
                Some(maximum_pages) => Some(maximum_pages.0.try_into().map_err(|_| {
                    Error::Memory(format!(
                        "maximum ({}) can't be coerced to u32",
                        maximum_pages.0
                    ))
                })?),
                None => None,
            };
            validation::validate_memory(initial_u32, maximum_u32).map_err(Error::Memory)?;
        }

        let memory = MemoryInstance::new(initial, maximum)?;
        Ok(MemoryRef(Rc::new(memory)))
    }

    /// Create new linear memory instance.
    fn new(initial: Pages, maximum: Option<Pages>) -> Result<Self, Error> {
        let limits = ResizableLimits::new(initial.0 as u32, maximum.map(|p| p.0 as u32));

        let initial_size: Bytes = initial.into();
        Ok(MemoryInstance {
            limits: limits,
            buffer: RefCell::new(
                ByteBuf::new(initial_size.0).map_err(|err| Error::Memory(err.to_string()))?,
            ),
            initial: initial,
            current_size: Cell::new(initial_size.0),
            maximum: maximum,
        })
    }

    /// Return linear memory limits.
    pub(crate) fn limits(&self) -> &ResizableLimits {
        &self.limits
    }

    /// Returns number of pages this `MemoryInstance` was created with.
    pub fn initial(&self) -> Pages {
        self.initial
    }

    /// Returns maximum amount of pages this `MemoryInstance` can grow to.
    ///
    /// Returns `None` if there is no limit set.
    /// Maximum memory size cannot exceed `65536` pages or 4GiB.
    pub fn maximum(&self) -> Option<Pages> {
        self.maximum
    }

    /// Returns current linear memory size.
    ///
    /// Maximum memory size cannot exceed `65536` pages or 4GiB.
    ///
    /// # Example
    ///
    /// To convert number of pages to number of bytes you can use the following code:
    ///
    /// ```rust
    /// use wasmi::MemoryInstance;
    /// use wasmi::memory_units::*;
    ///
    /// let memory = MemoryInstance::alloc(Pages(1), None).unwrap();
    /// let byte_size: Bytes = memory.current_size().into();
    /// assert_eq!(
    ///     byte_size,
    ///     Bytes(65536),
    /// );
    /// ```
    pub fn current_size(&self) -> Pages {
        Bytes(self.buffer.borrow().len()).round_up_to()
    }

    /// Get value from memory at given offset.
    pub fn get_value<T: LittleEndianConvert>(&self, offset: u32) -> Result<T, Error> {
        let mut buffer = self.buffer.borrow_mut();
        let region =
            self.checked_region(&mut buffer, offset as usize, ::core::mem::size_of::<T>())?;
        Ok(
            T::from_little_endian(&buffer.as_slice_mut()[region.range()])
                .expect("Slice size is checked"),
        )
    }

    /// Copy data from memory at given offset.
    ///
    /// This will allocate vector for you.
    /// If you can provide a mutable slice you can use [`get_into`].
    ///
    /// [`get_into`]: #method.get_into
    pub fn get(&self, offset: u32, size: usize) -> Result<Vec<u8>, Error> {
        let mut buffer = self.buffer.borrow_mut();
        let region = self.checked_region(&mut buffer, offset as usize, size)?;

        Ok(buffer.as_slice_mut()[region.range()].to_vec())
    }

    /// Copy data from given offset in the memory into `target` slice.
    ///
    /// # Errors
    ///
    /// Returns `Err` if the specified region is out of bounds.
    pub fn get_into(&self, offset: u32, target: &mut [u8]) -> Result<(), Error> {
        let mut buffer = self.buffer.borrow_mut();
        let region = self.checked_region(&mut buffer, offset as usize, target.len())?;

        target.copy_from_slice(&buffer.as_slice_mut()[region.range()]);

        Ok(())
    }

    /// Copy data in the memory at given offset.
    pub fn set(&self, offset: u32, value: &[u8]) -> Result<(), Error> {
        let mut buffer = self.buffer.borrow_mut();
        let range = self
            .checked_region(&mut buffer, offset as usize, value.len())?
            .range();

        buffer.as_slice_mut()[range].copy_from_slice(value);

        Ok(())
    }

    /// Copy value in the memory at given offset.
    pub fn set_value<T: LittleEndianConvert>(&self, offset: u32, value: T) -> Result<(), Error> {
        let mut buffer = self.buffer.borrow_mut();
        let range = self
            .checked_region(&mut buffer, offset as usize, ::core::mem::size_of::<T>())?
            .range();
        value.into_little_endian(&mut buffer.as_slice_mut()[range]);
        Ok(())
    }

    /// Increases the size of the linear memory by given number of pages.
    /// Returns previous memory size if succeeds.
    ///
    /// # Errors
    ///
    /// Returns `Err` if attempted to allocate more memory than permited by the limit.
    pub fn grow(&self, additional: Pages) -> Result<Pages, Error> {
        let size_before_grow: Pages = self.current_size();

        if additional == Pages(0) {
            return Ok(size_before_grow);
        }
        if additional > Pages(65536) {
            return Err(Error::Memory(format!(
                "Trying to grow memory by more than 65536 pages"
            )));
        }

        let new_size: Pages = size_before_grow + additional;
        let maximum = self
            .maximum
            .unwrap_or(Pages(validation::LINEAR_MEMORY_MAX_PAGES as usize));
        if new_size > maximum {
            return Err(Error::Memory(format!(
                "Trying to grow memory by {} pages when already have {}",
                additional.0, size_before_grow.0,
            )));
        }

        let new_buffer_length: Bytes = new_size.into();
        self.buffer
            .borrow_mut()
            .realloc(new_buffer_length.0)
            .map_err(|err| Error::Memory(err.to_string()))?;

        self.current_size.set(new_buffer_length.0);

        Ok(size_before_grow)
    }

    fn checked_region(
        &self,
        buffer: &mut ByteBuf,
        offset: usize,
        size: usize,
    ) -> Result<CheckedRegion, Error> {
        let end = offset.checked_add(size).ok_or_else(|| {
            Error::Memory(format!(
                "trying to access memory block of size {} from offset {}",
                size, offset
            ))
        })?;

        if end > buffer.len() {
            return Err(Error::Memory(format!(
                "trying to access region [{}..{}] in memory [0..{}]",
                offset,
                end,
                buffer.len()
            )));
        }

        Ok(CheckedRegion {
            offset: offset,
            size: size,
        })
    }

    fn checked_region_pair(
        &self,
        buffer: &mut ByteBuf,
        offset1: usize,
        size1: usize,
        offset2: usize,
        size2: usize,
    ) -> Result<(CheckedRegion, CheckedRegion), Error> {
        let end1 = offset1.checked_add(size1).ok_or_else(|| {
            Error::Memory(format!(
                "trying to access memory block of size {} from offset {}",
                size1, offset1
            ))
        })?;

        let end2 = offset2.checked_add(size2).ok_or_else(|| {
            Error::Memory(format!(
                "trying to access memory block of size {} from offset {}",
                size2, offset2
            ))
        })?;

        if end1 > buffer.len() {
            return Err(Error::Memory(format!(
                "trying to access region [{}..{}] in memory [0..{}]",
                offset1,
                end1,
                buffer.len()
            )));
        }

        if end2 > buffer.len() {
            return Err(Error::Memory(format!(
                "trying to access region [{}..{}] in memory [0..{}]",
                offset2,
                end2,
                buffer.len()
            )));
        }

        Ok((
            CheckedRegion {
                offset: offset1,
                size: size1,
            },
            CheckedRegion {
                offset: offset2,
                size: size2,
            },
        ))
    }

    /// Copy contents of one memory region to another.
    ///
    /// Semantically equivalent to `memmove`.
    ///
    /// # Errors
    ///
    /// Returns `Err` if either of specified regions is out of bounds.
    pub fn copy(&self, src_offset: usize, dst_offset: usize, len: usize) -> Result<(), Error> {
        let mut buffer = self.buffer.borrow_mut();

        let (read_region, write_region) =
            self.checked_region_pair(&mut buffer, src_offset, len, dst_offset, len)?;

        unsafe {
            ::core::ptr::copy(
                buffer.as_slice()[read_region.range()].as_ptr(),
                buffer.as_slice_mut()[write_region.range()].as_mut_ptr(),
                len,
            )
        }

        Ok(())
    }

    /// Copy contents of one memory region to another (non-overlapping version).
    ///
    /// Semantically equivalent to `memcpy`.
    /// but returns Error if source overlaping with destination.
    ///
    /// # Errors
    ///
    /// Returns `Err` if:
    ///
    /// - either of specified regions is out of bounds,
    /// - these regions overlaps.
    pub fn copy_nonoverlapping(
        &self,
        src_offset: usize,
        dst_offset: usize,
        len: usize,
    ) -> Result<(), Error> {
        let mut buffer = self.buffer.borrow_mut();

        let (read_region, write_region) =
            self.checked_region_pair(&mut buffer, src_offset, len, dst_offset, len)?;

        if read_region.intersects(&write_region) {
            return Err(Error::Memory(format!(
                "non-overlapping copy is used for overlapping regions"
            )));
        }

        unsafe {
            ::core::ptr::copy_nonoverlapping(
                buffer.as_slice()[read_region.range()].as_ptr(),
                buffer.as_slice_mut()[write_region.range()].as_mut_ptr(),
                len,
            )
        }

        Ok(())
    }

    /// Copy memory between two (possibly distinct) memory instances.
    ///
    /// If the same memory instance passed as `src` and `dst` then usual `copy` will be used.
    pub fn transfer(
        src: &MemoryRef,
        src_offset: usize,
        dst: &MemoryRef,
        dst_offset: usize,
        len: usize,
    ) -> Result<(), Error> {
        if Rc::ptr_eq(&src.0, &dst.0) {
            // `transfer` is invoked with with same source and destination. Let's assume that regions may
            // overlap and use `copy`.
            return src.copy(src_offset, dst_offset, len);
        }

        // Because memory references point to different memory instances, it is safe to `borrow_mut`
        // both buffers at once (modulo `with_direct_access_mut`).
        let mut src_buffer = src.buffer.borrow_mut();
        let mut dst_buffer = dst.buffer.borrow_mut();

        let src_range = src
            .checked_region(&mut src_buffer, src_offset, len)?
            .range();
        let dst_range = dst
            .checked_region(&mut dst_buffer, dst_offset, len)?
            .range();

        dst_buffer.as_slice_mut()[dst_range].copy_from_slice(&src_buffer.as_slice()[src_range]);

        Ok(())
    }

    /// Fill the memory region with the specified value.
    ///
    /// Semantically equivalent to `memset`.
    ///
    /// # Errors
    ///
    /// Returns `Err` if the specified region is out of bounds.
    pub fn clear(&self, offset: usize, new_val: u8, len: usize) -> Result<(), Error> {
        let mut buffer = self.buffer.borrow_mut();

        let range = self.checked_region(&mut buffer, offset, len)?.range();

        for val in &mut buffer.as_slice_mut()[range] {
            *val = new_val
        }
        Ok(())
    }

    /// Fill the specified memory region with zeroes.
    ///
    /// # Errors
    ///
    /// Returns `Err` if the specified region is out of bounds.
    pub fn zero(&self, offset: usize, len: usize) -> Result<(), Error> {
        self.clear(offset, 0, len)
    }

    /// Set every byte in the entire linear memory to 0, preserving its size.
    ///
    /// Might be useful for some optimization shenanigans.
    pub fn erase(&self) -> Result<(), Error> {
        self.buffer
            .borrow_mut()
            .erase()
            .map_err(|err| Error::Memory(err))
    }

    /// Provides direct access to the underlying memory buffer.
    ///
    /// # Panics
    ///
    /// Any call that requires write access to memory (such as [`set`], [`clear`], etc) made within
    /// the closure will panic.
    ///
    /// [`set`]: #method.get
    /// [`clear`]: #method.set
    pub fn with_direct_access<R, F: FnOnce(&[u8]) -> R>(&self, f: F) -> R {
        let buf = self.buffer.borrow();
        f(buf.as_slice())
    }

    /// Provides direct mutable access to the underlying memory buffer.
    ///
    /// # Panics
    ///
    /// Any calls that requires either read or write access to memory (such as [`get`], [`set`], [`copy`], etc) made
    /// within the closure will panic. Proceed with caution.
    ///
    /// [`get`]: #method.get
    /// [`set`]: #method.set
    pub fn with_direct_access_mut<R, F: FnOnce(&mut [u8]) -> R>(&self, f: F) -> R {
        let mut buf = self.buffer.borrow_mut();
        f(buf.as_slice_mut())
    }
}

#[cfg(test)]
mod tests {

    use super::{MemoryInstance, MemoryRef, LINEAR_MEMORY_PAGE_SIZE};
    use memory_units::Pages;
    use std::rc::Rc;
    use Error;

    #[test]
    fn alloc() {
        let mut fixtures = vec![
            (0, None, true),
            (0, Some(0), true),
            (1, None, true),
            (1, Some(1), true),
            (0, Some(1), true),
            (1, Some(0), false),
        ];

        #[cfg(target_pointer_width = "64")]
        fixtures.extend(&[
            (65536, Some(65536), true),
            (65536, Some(0), false),
            (65536, None, true),
        ]);

        for (index, &(initial, maybe_max, expected_ok)) in fixtures.iter().enumerate() {
            let initial: Pages = Pages(initial);
            let maximum: Option<Pages> = maybe_max.map(|m| Pages(m));
            let result = MemoryInstance::alloc(initial, maximum);
            if result.is_ok() != expected_ok {
                panic!(
                    "unexpected error at {}, initial={:?}, max={:?}, expected={}, result={:?}",
                    index, initial, maybe_max, expected_ok, result,
                );
            }
        }
    }

    #[test]
    fn ensure_page_size() {
        use memory_units::ByteSize;
        assert_eq!(LINEAR_MEMORY_PAGE_SIZE, Pages::byte_size());
    }

    fn create_memory(initial_content: &[u8]) -> MemoryInstance {
        let mem = MemoryInstance::new(Pages(1), Some(Pages(1))).unwrap();
        mem.set(0, initial_content)
            .expect("Successful initialize the memory");
        mem
    }

    #[test]
    fn copy_overlaps_1() {
        let mem = create_memory(&[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
        mem.copy(0, 4, 6).expect("Successfully copy the elements");
        let result = mem.get(0, 10).expect("Successfully retrieve the result");
        assert_eq!(result, &[0, 1, 2, 3, 0, 1, 2, 3, 4, 5]);
    }

    #[test]
    fn copy_overlaps_2() {
        let mem = create_memory(&[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
        mem.copy(4, 0, 6).expect("Successfully copy the elements");
        let result = mem.get(0, 10).expect("Successfully retrieve the result");
        assert_eq!(result, &[4, 5, 6, 7, 8, 9, 6, 7, 8, 9]);
    }

    #[test]
    fn copy_nonoverlapping() {
        let mem = create_memory(&[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
        mem.copy_nonoverlapping(0, 10, 10)
            .expect("Successfully copy the elements");
        let result = mem.get(10, 10).expect("Successfully retrieve the result");
        assert_eq!(result, &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
    }

    #[test]
    fn copy_nonoverlapping_overlaps_1() {
        let mem = create_memory(&[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
        let result = mem.copy_nonoverlapping(0, 4, 6);
        match result {
            Err(Error::Memory(_)) => {}
            _ => panic!("Expected Error::Memory(_) result, but got {:?}", result),
        }
    }

    #[test]
    fn copy_nonoverlapping_overlaps_2() {
        let mem = create_memory(&[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
        let result = mem.copy_nonoverlapping(4, 0, 6);
        match result {
            Err(Error::Memory(_)) => {}
            _ => panic!("Expected Error::Memory(_), but got {:?}", result),
        }
    }

    #[test]
    fn transfer_works() {
        let src = MemoryRef(Rc::new(create_memory(&[0, 1, 2, 3, 4, 5, 6, 7, 8, 9])));
        let dst = MemoryRef(Rc::new(create_memory(&[
            10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
        ])));

        MemoryInstance::transfer(&src, 4, &dst, 0, 3).unwrap();

        assert_eq!(src.get(0, 10).unwrap(), &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
        assert_eq!(
            dst.get(0, 10).unwrap(),
            &[4, 5, 6, 13, 14, 15, 16, 17, 18, 19]
        );
    }

    #[test]
    fn transfer_still_works_with_same_memory() {
        let src = MemoryRef(Rc::new(create_memory(&[0, 1, 2, 3, 4, 5, 6, 7, 8, 9])));

        MemoryInstance::transfer(&src, 4, &src, 0, 3).unwrap();

        assert_eq!(src.get(0, 10).unwrap(), &[4, 5, 6, 3, 4, 5, 6, 7, 8, 9]);
    }

    #[test]
    fn transfer_oob_with_same_memory_errors() {
        let src = MemoryRef(Rc::new(create_memory(&[0, 1, 2, 3, 4, 5, 6, 7, 8, 9])));
        assert!(MemoryInstance::transfer(&src, 65535, &src, 0, 3).is_err());

        // Check that memories content left untouched
        assert_eq!(src.get(0, 10).unwrap(), &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
    }

    #[test]
    fn transfer_oob_errors() {
        let src = MemoryRef(Rc::new(create_memory(&[0, 1, 2, 3, 4, 5, 6, 7, 8, 9])));
        let dst = MemoryRef(Rc::new(create_memory(&[
            10, 11, 12, 13, 14, 15, 16, 17, 18, 19,
        ])));

        assert!(MemoryInstance::transfer(&src, 65535, &dst, 0, 3).is_err());

        // Check that memories content left untouched
        assert_eq!(src.get(0, 10).unwrap(), &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
        assert_eq!(
            dst.get(0, 10).unwrap(),
            &[10, 11, 12, 13, 14, 15, 16, 17, 18, 19]
        );
    }

    #[test]
    fn clear() {
        let mem = create_memory(&[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
        mem.clear(0, 0x4A, 10)
            .expect("To successfully clear the memory");
        let result = mem.get(0, 10).expect("To successfully retrieve the result");
        assert_eq!(result, &[0x4A; 10]);
    }

    #[test]
    fn get_into() {
        let mem = MemoryInstance::new(Pages(1), None).unwrap();
        mem.set(6, &[13, 17, 129])
            .expect("memory set should not fail");

        let mut data = [0u8; 2];
        mem.get_into(7, &mut data[..])
            .expect("get_into should not fail");

        assert_eq!(data, [17, 129]);
    }

    #[test]
    fn zero_copy() {
        let mem = MemoryInstance::alloc(Pages(1), None).unwrap();
        mem.set(100, &[0]).expect("memory set should not fail");
        mem.with_direct_access_mut(|buf| {
            assert_eq!(
                buf.len(),
                65536,
                "the buffer length is expected to be 1 page long"
            );
            buf[..10].copy_from_slice(&[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
        });
        mem.with_direct_access(|buf| {
            assert_eq!(
                buf.len(),
                65536,
                "the buffer length is expected to be 1 page long"
            );
            assert_eq!(&buf[..10], &[0, 1, 2, 3, 4, 5, 6, 7, 8, 9]);
        });
    }

    #[should_panic]
    #[test]
    fn zero_copy_panics_on_nested_access() {
        let mem = MemoryInstance::alloc(Pages(1), None).unwrap();
        let mem_inner = mem.clone();
        mem.with_direct_access(move |_| {
            let _ = mem_inner.set(0, &[11, 12, 13]);
        });
    }
}