Files
addr2line
ahash
aho_corasick
arrayref
arrayvec
artemis_asset
artemis_core
artemis_erc20_app
artemis_eth_app
artemis_ethereum
backtrace
base58
bip39
bitmask
bitvec
blake2_rfc
block_buffer
block_padding
byte_slice_cast
byte_tools
byteorder
cfg_if
clear_on_drop
const_random
const_random_macro
constant_time_eq
crunchy
crypto_mac
curve25519_dalek
derive_more
digest
ed25519_dalek
either
environmental
ethabi_decode
ethbloom
ethereum_types
failure
failure_derive
fake_simd
fixed_hash
frame_metadata
frame_support
frame_support_procedural
frame_support_procedural_tools
frame_support_procedural_tools_derive
frame_system
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
generic_array
getrandom
gimli
hash256_std_hasher
hash_db
hashbrown
hex
hex_literal
hmac
hmac_drbg
impl_codec
impl_rlp
impl_serde
impl_trait_for_tuples
inflector
cases
camelcase
case
classcase
kebabcase
pascalcase
screamingsnakecase
sentencecase
snakecase
tablecase
titlecase
traincase
numbers
deordinalize
ordinalize
string
constants
deconstantize
demodulize
pluralize
singularize
suffix
foreignkey
integer_sqrt
itertools
keccak
lazy_static
libc
lock_api
log
memchr
memory_db
memory_units
merlin
nodrop
num_bigint
num_cpus
num_integer
num_rational
num_traits
object
once_cell
opaque_debug
pallet_bridge
pallet_verifier
parity_scale_codec
parity_scale_codec_derive
parity_util_mem
parity_util_mem_derive
parity_wasm
parking_lot
parking_lot_core
paste
paste_impl
pbkdf2
pin_project
pin_project_internal
pin_utils
ppv_lite86
primitive_types
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
radium
rand
rand_chacha
rand_core
rand_pcg
ref_cast
ref_cast_impl
regex
regex_syntax
rental
rental_impl
rlp
rustc_demangle
rustc_hash
rustc_hex
schnorrkel
scopeguard
secp256k1
serde
serde_derive
sha2
slab
smallvec
sp_application_crypto
sp_arithmetic
sp_core
sp_debug_derive
sp_externalities
sp_inherents
sp_io
sp_panic_handler
sp_runtime
sp_runtime_interface
sp_runtime_interface_proc_macro
sp_state_machine
sp_std
sp_storage
sp_tracing
sp_trie
sp_version
sp_wasm_interface
stable_deref_trait
static_assertions
substrate_bip39
subtle
syn
synstructure
thread_local
tiny_keccak
toml
tracing
tracing_attributes
tracing_core
trie_db
trie_root
twox_hash
typenum
uint
unicode_normalization
unicode_xid
wasmi
wasmi_validation
zeroize
zeroize_derive
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
// This file contains a set of fairly generic utility functions when working
// with SIMD vectors.
//
// SAFETY: All of the routines below are unsafe to call because they assume
// the necessary CPU target features in order to use particular vendor
// intrinsics. Calling these routines when the underlying CPU does not support
// the appropriate target features is NOT safe. Callers must ensure this
// themselves.
//
// Note that it may not look like this safety invariant is being upheld when
// these routines are called. Namely, the CPU feature check is typically pretty
// far away from when these routines are used. Instead, we rely on the fact
// that certain types serve as a guaranteed receipt that pertinent target
// features are enabled. For example, the only way TeddySlim3Mask256 can be
// constructed is if the AVX2 CPU feature is available. Thus, any code running
// inside of TeddySlim3Mask256 can use any of the functions below without any
// additional checks: its very existence *is* the check.

use std::arch::x86_64::*;

/// Shift `a` to the left by two bytes (removing its two most significant
/// bytes), and concatenate it with the the two most significant bytes of `b`.
#[target_feature(enable = "avx2")]
pub unsafe fn alignr256_14(a: __m256i, b: __m256i) -> __m256i {
    // Credit goes to jneem for figuring this out:
    // https://github.com/jneem/teddy/blob/9ab5e899ad6ef6911aecd3cf1033f1abe6e1f66c/src/x86/teddy_simd.rs#L145-L184
    //
    // TL;DR avx2's PALIGNR instruction is actually just two 128-bit PALIGNR
    // instructions, which is not what we want, so we need to do some extra
    // shuffling.

    // This permute gives us the low 16 bytes of a concatenated with the high
    // 16 bytes of b, in order of most significant to least significant. So
    // `v = a[15:0] b[31:16]`.
    let v = _mm256_permute2x128_si256(b, a, 0x21);
    // This effectively does this (where we deal in terms of byte-indexing
    // and byte-shifting, and use inclusive ranges):
    //
    //   ret[15:0]  := ((a[15:0] << 16) | v[15:0]) >> 14
    //               = ((a[15:0] << 16) | b[31:16]) >> 14
    //   ret[31:16] := ((a[31:16] << 16) | v[31:16]) >> 14
    //               = ((a[31:16] << 16) | a[15:0]) >> 14
    //
    // Which therefore results in:
    //
    //   ret[31:0]  := a[29:16] a[15:14] a[13:0] b[31:30]
    //
    // The end result is that we've effectively done this:
    //
    //   (a << 2) | (b >> 30)
    //
    // When `A` and `B` are strings---where the beginning of the string is in
    // the least significant bits---we effectively result in the following
    // semantic operation:
    //
    //   (A >> 2) | (B << 30)
    //
    // The reversal being attributed to the fact that we are in little-endian.
    _mm256_alignr_epi8(a, v, 14)
}

/// Shift `a` to the left by one byte (removing its most significant byte), and
/// concatenate it with the the most significant byte of `b`.
#[target_feature(enable = "avx2")]
pub unsafe fn alignr256_15(a: __m256i, b: __m256i) -> __m256i {
    // For explanation, see alignr256_14.
    let v = _mm256_permute2x128_si256(b, a, 0x21);
    _mm256_alignr_epi8(a, v, 15)
}

/// Unpack the given 128-bit vector into its 64-bit components. The first
/// element of the array returned corresponds to the least significant 64-bit
/// lane in `a`.
#[target_feature(enable = "ssse3")]
pub unsafe fn unpack64x128(a: __m128i) -> [u64; 2] {
    [
        _mm_cvtsi128_si64(a) as u64,
        _mm_cvtsi128_si64(_mm_srli_si128(a, 8)) as u64,
    ]
}

/// Unpack the given 256-bit vector into its 64-bit components. The first
/// element of the array returned corresponds to the least significant 64-bit
/// lane in `a`.
#[target_feature(enable = "avx2")]
pub unsafe fn unpack64x256(a: __m256i) -> [u64; 4] {
    // Using transmute here is precisely equivalent, but actually slower. It's
    // not quite clear why.
    let lo = _mm256_extracti128_si256(a, 0);
    let hi = _mm256_extracti128_si256(a, 1);
    [
        _mm_cvtsi128_si64(lo) as u64,
        _mm_cvtsi128_si64(_mm_srli_si128(lo, 8)) as u64,
        _mm_cvtsi128_si64(hi) as u64,
        _mm_cvtsi128_si64(_mm_srli_si128(hi, 8)) as u64,
    ]
}

/// Unpack the low 128-bits of `a` and `b`, and return them as 4 64-bit
/// integers.
///
/// More precisely, if a = a4 a3 a2 a1 and b = b4 b3 b2 b1, where each element
/// is a 64-bit integer and a1/b1 correspond to the least significant 64 bits,
/// then the return value is `b2 b1 a2 a1`.
#[target_feature(enable = "avx2")]
pub unsafe fn unpacklo64x256(a: __m256i, b: __m256i) -> [u64; 4] {
    let lo = _mm256_castsi256_si128(a);
    let hi = _mm256_castsi256_si128(b);
    [
        _mm_cvtsi128_si64(lo) as u64,
        _mm_cvtsi128_si64(_mm_srli_si128(lo, 8)) as u64,
        _mm_cvtsi128_si64(hi) as u64,
        _mm_cvtsi128_si64(_mm_srli_si128(hi, 8)) as u64,
    ]
}

/// Returns true if and only if all bits in the given 128-bit vector are 0.
#[target_feature(enable = "ssse3")]
pub unsafe fn is_all_zeroes128(a: __m128i) -> bool {
    let cmp = _mm_cmpeq_epi8(a, zeroes128());
    _mm_movemask_epi8(cmp) as u32 == 0xFFFF
}

/// Returns true if and only if all bits in the given 256-bit vector are 0.
#[target_feature(enable = "avx2")]
pub unsafe fn is_all_zeroes256(a: __m256i) -> bool {
    let cmp = _mm256_cmpeq_epi8(a, zeroes256());
    _mm256_movemask_epi8(cmp) as u32 == 0xFFFFFFFF
}

/// Load a 128-bit vector from slice at the given position. The slice does
/// not need to be unaligned.
///
/// Since this code assumes little-endian (there is no big-endian x86), the
/// bytes starting in `slice[at..]` will be at the least significant bits of
/// the returned vector. This is important for the surrounding code, since for
/// example, shifting the resulting vector right is equivalent to logically
/// shifting the bytes in `slice` left.
#[target_feature(enable = "sse2")]
pub unsafe fn loadu128(slice: &[u8], at: usize) -> __m128i {
    let ptr = slice.get_unchecked(at..).as_ptr();
    _mm_loadu_si128(ptr as *const u8 as *const __m128i)
}

/// Load a 256-bit vector from slice at the given position. The slice does
/// not need to be unaligned.
///
/// Since this code assumes little-endian (there is no big-endian x86), the
/// bytes starting in `slice[at..]` will be at the least significant bits of
/// the returned vector. This is important for the surrounding code, since for
/// example, shifting the resulting vector right is equivalent to logically
/// shifting the bytes in `slice` left.
#[target_feature(enable = "avx2")]
pub unsafe fn loadu256(slice: &[u8], at: usize) -> __m256i {
    let ptr = slice.get_unchecked(at..).as_ptr();
    _mm256_loadu_si256(ptr as *const u8 as *const __m256i)
}

/// Returns a 128-bit vector with all bits set to 0.
#[target_feature(enable = "sse2")]
pub unsafe fn zeroes128() -> __m128i {
    _mm_set1_epi8(0)
}

/// Returns a 256-bit vector with all bits set to 0.
#[target_feature(enable = "avx2")]
pub unsafe fn zeroes256() -> __m256i {
    _mm256_set1_epi8(0)
}

/// Returns a 128-bit vector with all bits set to 1.
#[target_feature(enable = "sse2")]
pub unsafe fn ones128() -> __m128i {
    _mm_set1_epi8(0xFF as u8 as i8)
}

/// Returns a 256-bit vector with all bits set to 1.
#[target_feature(enable = "avx2")]
pub unsafe fn ones256() -> __m256i {
    _mm256_set1_epi8(0xFF as u8 as i8)
}