Files
addr2line
ahash
aho_corasick
arrayref
arrayvec
artemis_asset
artemis_core
artemis_erc20_app
artemis_eth_app
artemis_ethereum
backtrace
base58
bip39
bitmask
bitvec
blake2_rfc
block_buffer
block_padding
byte_slice_cast
byte_tools
byteorder
cfg_if
clear_on_drop
const_random
const_random_macro
constant_time_eq
crunchy
crypto_mac
curve25519_dalek
derive_more
digest
ed25519_dalek
either
environmental
ethabi_decode
ethbloom
ethereum_types
failure
failure_derive
fake_simd
fixed_hash
frame_metadata
frame_support
frame_support_procedural
frame_support_procedural_tools
frame_support_procedural_tools_derive
frame_system
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
generic_array
getrandom
gimli
hash256_std_hasher
hash_db
hashbrown
hex
hex_literal
hmac
hmac_drbg
impl_codec
impl_rlp
impl_serde
impl_trait_for_tuples
inflector
cases
camelcase
case
classcase
kebabcase
pascalcase
screamingsnakecase
sentencecase
snakecase
tablecase
titlecase
traincase
numbers
deordinalize
ordinalize
string
constants
deconstantize
demodulize
pluralize
singularize
suffix
foreignkey
integer_sqrt
itertools
keccak
lazy_static
libc
lock_api
log
memchr
memory_db
memory_units
merlin
nodrop
num_bigint
num_cpus
num_integer
num_rational
num_traits
object
once_cell
opaque_debug
pallet_bridge
pallet_verifier
parity_scale_codec
parity_scale_codec_derive
parity_util_mem
parity_util_mem_derive
parity_wasm
parking_lot
parking_lot_core
paste
paste_impl
pbkdf2
pin_project
pin_project_internal
pin_utils
ppv_lite86
primitive_types
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
radium
rand
rand_chacha
rand_core
rand_pcg
ref_cast
ref_cast_impl
regex
regex_syntax
rental
rental_impl
rlp
rustc_demangle
rustc_hash
rustc_hex
schnorrkel
scopeguard
secp256k1
serde
serde_derive
sha2
slab
smallvec
sp_application_crypto
sp_arithmetic
sp_core
sp_debug_derive
sp_externalities
sp_inherents
sp_io
sp_panic_handler
sp_runtime
sp_runtime_interface
sp_runtime_interface_proc_macro
sp_state_machine
sp_std
sp_storage
sp_tracing
sp_trie
sp_version
sp_wasm_interface
stable_deref_trait
static_assertions
substrate_bip39
subtle
syn
synstructure
thread_local
tiny_keccak
toml
tracing
tracing_attributes
tracing_core
trie_db
trie_root
twox_hash
typenum
uint
unicode_normalization
unicode_xid
wasmi
wasmi_validation
zeroize
zeroize_derive
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
/*!
A library for finding occurrences of many patterns at once. This library
provides multiple pattern search principally through an implementation of the
[Aho-Corasick algorithm](https://en.wikipedia.org/wiki/Aho%E2%80%93Corasick_algorithm),
which builds a fast finite state machine for executing searches in linear time.

Additionally, this library provides a number of configuration options for
building the automaton that permit controlling the space versus time trade
off. Other features include simple ASCII case insensitive matching, finding
overlapping matches, replacements, searching streams and even searching and
replacing text in streams.

Finally, unlike all other (known) Aho-Corasick implementations, this one
supports enabling
[leftmost-first](enum.MatchKind.html#variant.LeftmostFirst)
or
[leftmost-longest](enum.MatchKind.html#variant.LeftmostFirst)
match semantics, using a (seemingly) novel alternative construction algorithm.
For more details on what match semantics means, see the
[`MatchKind`](enum.MatchKind.html)
type.

# Overview

This section gives a brief overview of the primary types in this crate:

* [`AhoCorasick`](struct.AhoCorasick.html) is the primary type and represents
  an Aho-Corasick automaton. This is the type you use to execute searches.
* [`AhoCorasickBuilder`](struct.AhoCorasickBuilder.html) can be used to build
  an Aho-Corasick automaton, and supports configuring a number of options.
* [`Match`](struct.Match.html) represents a single match reported by an
  Aho-Corasick automaton. Each match has two pieces of information: the pattern
  that matched and the start and end byte offsets corresponding to the position
  in the haystack at which it matched.

Additionally, the [`packed`](packed/index.html) sub-module contains a lower
level API for using fast vectorized routines for finding a small number of
patterns in a haystack.

# Example: basic searching

This example shows how to search for occurrences of multiple patterns
simultaneously. Each match includes the pattern that matched along with the
byte offsets of the match.

```
use aho_corasick::AhoCorasick;

let patterns = &["apple", "maple", "Snapple"];
let haystack = "Nobody likes maple in their apple flavored Snapple.";

let ac = AhoCorasick::new(patterns);
let mut matches = vec![];
for mat in ac.find_iter(haystack) {
    matches.push((mat.pattern(), mat.start(), mat.end()));
}
assert_eq!(matches, vec![
    (1, 13, 18),
    (0, 28, 33),
    (2, 43, 50),
]);
```

# Example: case insensitivity

This is like the previous example, but matches `Snapple` case insensitively
using `AhoCorasickBuilder`:

```
use aho_corasick::AhoCorasickBuilder;

let patterns = &["apple", "maple", "snapple"];
let haystack = "Nobody likes maple in their apple flavored Snapple.";

let ac = AhoCorasickBuilder::new()
    .ascii_case_insensitive(true)
    .build(patterns);
let mut matches = vec![];
for mat in ac.find_iter(haystack) {
    matches.push((mat.pattern(), mat.start(), mat.end()));
}
assert_eq!(matches, vec![
    (1, 13, 18),
    (0, 28, 33),
    (2, 43, 50),
]);
```

# Example: replacing matches in a stream

This example shows how to execute a search and replace on a stream without
loading the entire stream into memory first.

```
use aho_corasick::AhoCorasick;

# fn example() -> Result<(), ::std::io::Error> {
let patterns = &["fox", "brown", "quick"];
let replace_with = &["sloth", "grey", "slow"];

// In a real example, these might be `std::fs::File`s instead. All you need to
// do is supply a pair of `std::io::Read` and `std::io::Write` implementations.
let rdr = "The quick brown fox.";
let mut wtr = vec![];

let ac = AhoCorasick::new(patterns);
ac.stream_replace_all(rdr.as_bytes(), &mut wtr, replace_with)?;
assert_eq!(b"The slow grey sloth.".to_vec(), wtr);
# Ok(()) }; example().unwrap()
```

# Example: finding the leftmost first match

In the textbook description of Aho-Corasick, its formulation is typically
structured such that it reports all possible matches, even when they overlap
with another. In many cases, overlapping matches may not be desired, such as
the case of finding all successive non-overlapping matches like you might with
a standard regular expression.

Unfortunately the "obvious" way to modify the Aho-Corasick algorithm to do
this doesn't always work in the expected way, since it will report matches as
soon as they are seen. For example, consider matching the regex `Samwise|Sam`
against the text `Samwise`. Most regex engines (that are Perl-like, or
non-POSIX) will report `Samwise` as a match, but the standard Aho-Corasick
algorithm modified for reporting non-overlapping matches will report `Sam`.

A novel contribution of this library is the ability to change the match
semantics of Aho-Corasick (without additional search time overhead) such that
`Samwise` is reported instead. For example, here's the standard approach:

```
use aho_corasick::AhoCorasick;

let patterns = &["Samwise", "Sam"];
let haystack = "Samwise";

let ac = AhoCorasick::new(patterns);
let mat = ac.find(haystack).expect("should have a match");
assert_eq!("Sam", &haystack[mat.start()..mat.end()]);
```

And now here's the leftmost-first version, which matches how a Perl-like
regex will work:

```
use aho_corasick::{AhoCorasickBuilder, MatchKind};

let patterns = &["Samwise", "Sam"];
let haystack = "Samwise";

let ac = AhoCorasickBuilder::new()
    .match_kind(MatchKind::LeftmostFirst)
    .build(patterns);
let mat = ac.find(haystack).expect("should have a match");
assert_eq!("Samwise", &haystack[mat.start()..mat.end()]);
```

In addition to leftmost-first semantics, this library also supports
leftmost-longest semantics, which match the POSIX behavior of a regular
expression alternation. See
[`MatchKind`](enum.MatchKind.html)
for more details.

# Prefilters

While an Aho-Corasick automaton can perform admirably when compared to more
naive solutions, it is generally slower than more specialized algorithms that
are accelerated using vector instructions such as SIMD.

For that reason, this library will internally use a "prefilter" to attempt
to accelerate searches when possible. Currently, this library has fairly
limited implementation that only applies when there are 3 or fewer unique
starting bytes among all patterns in an automaton.

While a prefilter is generally good to have on by default since it works well
in the common case, it can lead to less predictable or even sub-optimal
performance in some cases. For that reason, prefilters can be disabled via
[`AhoCorasickBuilder::prefilter`](struct.AhoCorasickBuilder.html#method.prefilter).
*/

#![deny(missing_docs)]

// We can never be truly no_std, but we could be alloc-only some day, so
// require the std feature for now.
#[cfg(not(feature = "std"))]
compile_error!("`std` feature is currently required to build this crate");

extern crate memchr;
#[cfg(test)]
#[macro_use]
extern crate doc_comment;

#[cfg(test)]
doctest!("../README.md");

pub use ahocorasick::{
    AhoCorasick, AhoCorasickBuilder, FindIter, FindOverlappingIter, MatchKind,
    StreamFindIter,
};
pub use error::{Error, ErrorKind};
pub use state_id::StateID;

mod ahocorasick;
mod automaton;
mod buffer;
mod byte_frequencies;
mod classes;
mod dfa;
mod error;
mod nfa;
pub mod packed;
mod prefilter;
mod state_id;
#[cfg(test)]
mod tests;

/// A representation of a match reported by an Aho-Corasick automaton.
///
/// A match has two essential pieces of information: the identifier of the
/// pattern that matched, along with the start and end offsets of the match
/// in the haystack.
///
/// # Examples
///
/// Basic usage:
///
/// ```
/// use aho_corasick::AhoCorasick;
///
/// let ac = AhoCorasick::new(&[
///     "foo", "bar", "baz",
/// ]);
/// let mat = ac.find("xxx bar xxx").expect("should have a match");
/// assert_eq!(1, mat.pattern());
/// assert_eq!(4, mat.start());
/// assert_eq!(7, mat.end());
/// ```
#[derive(Clone, Debug, Eq, Hash, PartialEq)]
pub struct Match {
    /// The pattern id.
    pattern: usize,
    /// The length of this match, such that the starting position of the match
    /// is `end - len`.
    ///
    /// We use length here because, other than the pattern id, the only
    /// information about each pattern that the automaton stores is its length.
    /// So using the length here is just a bit more natural. But it isn't
    /// technically required.
    len: usize,
    /// The end offset of the match, exclusive.
    end: usize,
}

impl Match {
    /// Returns the identifier of the pattern that matched.
    ///
    /// The identifier of a pattern is derived from the position in which it
    /// was originally inserted into the corresponding automaton. The first
    /// pattern has identifier `0`, and each subsequent pattern is `1`, `2`
    /// and so on.
    #[inline]
    pub fn pattern(&self) -> usize {
        self.pattern
    }

    /// The starting position of the match.
    #[inline]
    pub fn start(&self) -> usize {
        self.end - self.len
    }

    /// The ending position of the match.
    #[inline]
    pub fn end(&self) -> usize {
        self.end
    }

    /// Returns true if and only if this match is empty. That is, when
    /// `start() == end()`.
    ///
    /// An empty match can only be returned when the empty string was among
    /// the patterns used to build the Aho-Corasick automaton.
    #[inline]
    pub fn is_empty(&self) -> bool {
        self.len == 0
    }

    #[inline]
    fn increment(&self, by: usize) -> Match {
        Match { pattern: self.pattern, len: self.len, end: self.end + by }
    }

    #[inline]
    fn from_span(id: usize, start: usize, end: usize) -> Match {
        Match { pattern: id, len: end - start, end }
    }
}