Files
addr2line
ahash
aho_corasick
arrayref
arrayvec
artemis_asset
artemis_core
artemis_erc20_app
artemis_eth_app
artemis_ethereum
backtrace
base58
bip39
bitmask
bitvec
blake2_rfc
block_buffer
block_padding
byte_slice_cast
byte_tools
byteorder
cfg_if
clear_on_drop
const_random
const_random_macro
constant_time_eq
crunchy
crypto_mac
curve25519_dalek
derive_more
digest
ed25519_dalek
either
environmental
ethabi_decode
ethbloom
ethereum_types
failure
failure_derive
fake_simd
fixed_hash
frame_metadata
frame_support
frame_support_procedural
frame_support_procedural_tools
frame_support_procedural_tools_derive
frame_system
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
generic_array
getrandom
gimli
hash256_std_hasher
hash_db
hashbrown
hex
hex_literal
hmac
hmac_drbg
impl_codec
impl_rlp
impl_serde
impl_trait_for_tuples
inflector
cases
camelcase
case
classcase
kebabcase
pascalcase
screamingsnakecase
sentencecase
snakecase
tablecase
titlecase
traincase
numbers
deordinalize
ordinalize
string
constants
deconstantize
demodulize
pluralize
singularize
suffix
foreignkey
integer_sqrt
itertools
keccak
lazy_static
libc
lock_api
log
memchr
memory_db
memory_units
merlin
nodrop
num_bigint
num_cpus
num_integer
num_rational
num_traits
object
once_cell
opaque_debug
pallet_bridge
pallet_verifier
parity_scale_codec
parity_scale_codec_derive
parity_util_mem
parity_util_mem_derive
parity_wasm
parking_lot
parking_lot_core
paste
paste_impl
pbkdf2
pin_project
pin_project_internal
pin_utils
ppv_lite86
primitive_types
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
radium
rand
rand_chacha
rand_core
rand_pcg
ref_cast
ref_cast_impl
regex
regex_syntax
rental
rental_impl
rlp
rustc_demangle
rustc_hash
rustc_hex
schnorrkel
scopeguard
secp256k1
serde
serde_derive
sha2
slab
smallvec
sp_application_crypto
sp_arithmetic
sp_core
sp_debug_derive
sp_externalities
sp_inherents
sp_io
sp_panic_handler
sp_runtime
sp_runtime_interface
sp_runtime_interface_proc_macro
sp_state_machine
sp_std
sp_storage
sp_tracing
sp_trie
sp_version
sp_wasm_interface
stable_deref_trait
static_assertions
substrate_bip39
subtle
syn
synstructure
thread_local
tiny_keccak
toml
tracing
tracing_attributes
tracing_core
trie_db
trie_root
twox_hash
typenum
uint
unicode_normalization
unicode_xid
wasmi
wasmi_validation
zeroize
zeroize_derive
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
use hir::{self, Hir, HirKind};

/// A trait for visiting the high-level IR (HIR) in depth first order.
///
/// The principle aim of this trait is to enable callers to perform case
/// analysis on a high-level intermediate representation of a regular
/// expression without necessarily using recursion. In particular, this permits
/// callers to do case analysis with constant stack usage, which can be
/// important since the size of an HIR may be proportional to end user input.
///
/// Typical usage of this trait involves providing an implementation and then
/// running it using the [`visit`](fn.visit.html) function.
pub trait Visitor {
    /// The result of visiting an HIR.
    type Output;
    /// An error that visiting an HIR might return.
    type Err;

    /// All implementors of `Visitor` must provide a `finish` method, which
    /// yields the result of visiting the HIR or an error.
    fn finish(self) -> Result<Self::Output, Self::Err>;

    /// This method is called before beginning traversal of the HIR.
    fn start(&mut self) {}

    /// This method is called on an `Hir` before descending into child `Hir`
    /// nodes.
    fn visit_pre(&mut self, _hir: &Hir) -> Result<(), Self::Err> {
        Ok(())
    }

    /// This method is called on an `Hir` after descending all of its child
    /// `Hir` nodes.
    fn visit_post(&mut self, _hir: &Hir) -> Result<(), Self::Err> {
        Ok(())
    }

    /// This method is called between child nodes of an alternation.
    fn visit_alternation_in(&mut self) -> Result<(), Self::Err> {
        Ok(())
    }
}

/// Executes an implementation of `Visitor` in constant stack space.
///
/// This function will visit every node in the given `Hir` while calling
/// appropriate methods provided by the
/// [`Visitor`](trait.Visitor.html) trait.
///
/// The primary use case for this method is when one wants to perform case
/// analysis over an `Hir` without using a stack size proportional to the depth
/// of the `Hir`. Namely, this method will instead use constant stack space,
/// but will use heap space proportional to the size of the `Hir`. This may be
/// desirable in cases where the size of `Hir` is proportional to end user
/// input.
///
/// If the visitor returns an error at any point, then visiting is stopped and
/// the error is returned.
pub fn visit<V: Visitor>(hir: &Hir, visitor: V) -> Result<V::Output, V::Err> {
    HeapVisitor::new().visit(hir, visitor)
}

/// HeapVisitor visits every item in an `Hir` recursively using constant stack
/// size and a heap size proportional to the size of the `Hir`.
struct HeapVisitor<'a> {
    /// A stack of `Hir` nodes. This is roughly analogous to the call stack
    /// used in a typical recursive visitor.
    stack: Vec<(&'a Hir, Frame<'a>)>,
}

/// Represents a single stack frame while performing structural induction over
/// an `Hir`.
enum Frame<'a> {
    /// A stack frame allocated just before descending into a repetition
    /// operator's child node.
    Repetition(&'a hir::Repetition),
    /// A stack frame allocated just before descending into a group's child
    /// node.
    Group(&'a hir::Group),
    /// The stack frame used while visiting every child node of a concatenation
    /// of expressions.
    Concat {
        /// The child node we are currently visiting.
        head: &'a Hir,
        /// The remaining child nodes to visit (which may be empty).
        tail: &'a [Hir],
    },
    /// The stack frame used while visiting every child node of an alternation
    /// of expressions.
    Alternation {
        /// The child node we are currently visiting.
        head: &'a Hir,
        /// The remaining child nodes to visit (which may be empty).
        tail: &'a [Hir],
    },
}

impl<'a> HeapVisitor<'a> {
    fn new() -> HeapVisitor<'a> {
        HeapVisitor { stack: vec![] }
    }

    fn visit<V: Visitor>(
        &mut self,
        mut hir: &'a Hir,
        mut visitor: V,
    ) -> Result<V::Output, V::Err> {
        self.stack.clear();

        visitor.start();
        loop {
            visitor.visit_pre(hir)?;
            if let Some(x) = self.induct(hir) {
                let child = x.child();
                self.stack.push((hir, x));
                hir = child;
                continue;
            }
            // No induction means we have a base case, so we can post visit
            // it now.
            visitor.visit_post(hir)?;

            // At this point, we now try to pop our call stack until it is
            // either empty or we hit another inductive case.
            loop {
                let (post_hir, frame) = match self.stack.pop() {
                    None => return visitor.finish(),
                    Some((post_hir, frame)) => (post_hir, frame),
                };
                // If this is a concat/alternate, then we might have additional
                // inductive steps to process.
                if let Some(x) = self.pop(frame) {
                    if let Frame::Alternation { .. } = x {
                        visitor.visit_alternation_in()?;
                    }
                    hir = x.child();
                    self.stack.push((post_hir, x));
                    break;
                }
                // Otherwise, we've finished visiting all the child nodes for
                // this HIR, so we can post visit it now.
                visitor.visit_post(post_hir)?;
            }
        }
    }

    /// Build a stack frame for the given HIR if one is needed (which occurs if
    /// and only if there are child nodes in the HIR). Otherwise, return None.
    fn induct(&mut self, hir: &'a Hir) -> Option<Frame<'a>> {
        match *hir.kind() {
            HirKind::Repetition(ref x) => Some(Frame::Repetition(x)),
            HirKind::Group(ref x) => Some(Frame::Group(x)),
            HirKind::Concat(ref x) if x.is_empty() => None,
            HirKind::Concat(ref x) => {
                Some(Frame::Concat { head: &x[0], tail: &x[1..] })
            }
            HirKind::Alternation(ref x) if x.is_empty() => None,
            HirKind::Alternation(ref x) => {
                Some(Frame::Alternation { head: &x[0], tail: &x[1..] })
            }
            _ => None,
        }
    }

    /// Pops the given frame. If the frame has an additional inductive step,
    /// then return it, otherwise return `None`.
    fn pop(&self, induct: Frame<'a>) -> Option<Frame<'a>> {
        match induct {
            Frame::Repetition(_) => None,
            Frame::Group(_) => None,
            Frame::Concat { tail, .. } => {
                if tail.is_empty() {
                    None
                } else {
                    Some(Frame::Concat { head: &tail[0], tail: &tail[1..] })
                }
            }
            Frame::Alternation { tail, .. } => {
                if tail.is_empty() {
                    None
                } else {
                    Some(Frame::Alternation {
                        head: &tail[0],
                        tail: &tail[1..],
                    })
                }
            }
        }
    }
}

impl<'a> Frame<'a> {
    /// Perform the next inductive step on this frame and return the next
    /// child HIR node to visit.
    fn child(&self) -> &'a Hir {
        match *self {
            Frame::Repetition(rep) => &rep.hir,
            Frame::Group(group) => &group.hir,
            Frame::Concat { head, .. } => head,
            Frame::Alternation { head, .. } => head,
        }
    }
}