Files
addr2line
ahash
aho_corasick
arrayref
arrayvec
artemis_asset
artemis_core
artemis_erc20_app
artemis_eth_app
artemis_ethereum
backtrace
base58
bip39
bitmask
bitvec
blake2_rfc
block_buffer
block_padding
byte_slice_cast
byte_tools
byteorder
cfg_if
clear_on_drop
const_random
const_random_macro
constant_time_eq
crunchy
crypto_mac
curve25519_dalek
derive_more
digest
ed25519_dalek
either
environmental
ethabi_decode
ethbloom
ethereum_types
failure
failure_derive
fake_simd
fixed_hash
frame_metadata
frame_support
frame_support_procedural
frame_support_procedural_tools
frame_support_procedural_tools_derive
frame_system
futures
futures_channel
futures_core
futures_executor
futures_io
futures_macro
futures_sink
futures_task
futures_util
async_await
future
io
lock
sink
stream
task
generic_array
getrandom
gimli
hash256_std_hasher
hash_db
hashbrown
hex
hex_literal
hmac
hmac_drbg
impl_codec
impl_rlp
impl_serde
impl_trait_for_tuples
inflector
cases
camelcase
case
classcase
kebabcase
pascalcase
screamingsnakecase
sentencecase
snakecase
tablecase
titlecase
traincase
numbers
deordinalize
ordinalize
string
constants
deconstantize
demodulize
pluralize
singularize
suffix
foreignkey
integer_sqrt
itertools
keccak
lazy_static
libc
lock_api
log
memchr
memory_db
memory_units
merlin
nodrop
num_bigint
num_cpus
num_integer
num_rational
num_traits
object
once_cell
opaque_debug
pallet_bridge
pallet_verifier
parity_scale_codec
parity_scale_codec_derive
parity_util_mem
parity_util_mem_derive
parity_wasm
parking_lot
parking_lot_core
paste
paste_impl
pbkdf2
pin_project
pin_project_internal
pin_utils
ppv_lite86
primitive_types
proc_macro2
proc_macro_crate
proc_macro_hack
proc_macro_nested
quote
radium
rand
rand_chacha
rand_core
rand_pcg
ref_cast
ref_cast_impl
regex
regex_syntax
rental
rental_impl
rlp
rustc_demangle
rustc_hash
rustc_hex
schnorrkel
scopeguard
secp256k1
serde
serde_derive
sha2
slab
smallvec
sp_application_crypto
sp_arithmetic
sp_core
sp_debug_derive
sp_externalities
sp_inherents
sp_io
sp_panic_handler
sp_runtime
sp_runtime_interface
sp_runtime_interface_proc_macro
sp_state_machine
sp_std
sp_storage
sp_tracing
sp_trie
sp_version
sp_wasm_interface
stable_deref_trait
static_assertions
substrate_bip39
subtle
syn
synstructure
thread_local
tiny_keccak
toml
tracing
tracing_attributes
tracing_core
trie_db
trie_root
twox_hash
typenum
uint
unicode_normalization
unicode_xid
wasmi
wasmi_validation
zeroize
zeroize_derive
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
// This file is part of Substrate.

// Copyright (C) 2019-2020 Parity Technologies (UK) Ltd.
// SPDX-License-Identifier: Apache-2.0

// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// 	http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.

//! Some helper functions to work with 128bit numbers. Note that the functionality provided here is
//! only sensible to use with 128bit numbers because for smaller sizes, you can always rely on
//! assumptions of a bigger type (u128) being available, or simply create a per-thing and use the
//! multiplication implementation provided there.

use crate::biguint;
use num_traits::Zero;
use sp_std::{cmp::{min, max}, convert::TryInto, mem};

/// Helper gcd function used in Rational128 implementation.
pub fn gcd(a: u128, b: u128) -> u128 {
	match ((a, b), (a & 1, b & 1)) {
		((x, y), _) if x == y => y,
		((0, x), _) | ((x, 0), _) => x,
		((x, y), (0, 1)) | ((y, x), (1, 0)) => gcd(x >> 1, y),
		((x, y), (0, 0)) => gcd(x >> 1, y >> 1) << 1,
		((x, y), (1, 1)) => {
			let (x, y) = (min(x, y), max(x, y));
			gcd((y - x) >> 1, x)
		},
		_ => unreachable!(),
	}
}

/// split a u128 into two u64 limbs
pub fn split(a: u128) -> (u64, u64) {
	let al = a as u64;
	let ah = (a >> 64) as u64;
	(ah, al)
}

/// Convert a u128 to a u32 based biguint.
pub fn to_big_uint(x: u128) -> biguint::BigUint {
	let (xh, xl) = split(x);
	let (xhh, xhl) = biguint::split(xh);
	let (xlh, xll) = biguint::split(xl);
	let mut n = biguint::BigUint::from_limbs(&[xhh, xhl, xlh, xll]);
	n.lstrip();
	n
}

/// Safely and accurately compute `a * b / c`. The approach is:
///   - Simply try `a * b / c`.
///   - Else, convert them both into big numbers and re-try. `Err` is returned if the result
///     cannot be safely casted back to u128.
///
/// Invariant: c must be greater than or equal to 1.
pub fn multiply_by_rational(mut a: u128, mut b: u128, mut c: u128) -> Result<u128, &'static str> {
	if a.is_zero() || b.is_zero() { return Ok(Zero::zero()); }
	c = c.max(1);

	// a and b are interchangeable by definition in this function. It always helps to assume the
	// bigger of which is being multiplied by a `0 < b/c < 1`. Hence, a should be the bigger and
	// b the smaller one.
	if b > a {
		mem::swap(&mut a, &mut b);
	}

	// Attempt to perform the division first
	if a % c == 0 {
		a /= c;
		c = 1;
	} else if b % c == 0 {
		b /= c;
		c = 1;
	}

	if let Some(x) = a.checked_mul(b) {
		// This is the safest way to go. Try it.
		Ok(x / c)
	} else {
		let a_num = to_big_uint(a);
		let b_num = to_big_uint(b);
		let c_num = to_big_uint(c);

		let mut ab = a_num * b_num;
		ab.lstrip();
		let mut q = if c_num.len() == 1 {
			// PROOF: if `c_num.len() == 1` then `c` fits in one limb.
			ab.div_unit(c as biguint::Single)
		} else {
			// PROOF: both `ab` and `c` cannot have leading zero limbs; if length of `c` is 1,
			// the previous branch would handle. Also, if ab for sure has a bigger size than
			// c, because `a.checked_mul(b)` has failed, hence ab must be at least one limb
			// bigger than c. In this case, returning zero is defensive-only and div should
			// always return Some.
			let (mut q, r) = ab.div(&c_num, true).unwrap_or((Zero::zero(), Zero::zero()));
			let r: u128 = r.try_into()
				.expect("reminder of div by c is always less than c; qed");
			if r > (c / 2) { q = q.add(&to_big_uint(1)); }
			q
		};
		q.lstrip();
		q.try_into().map_err(|_| "result cannot fit in u128")
	}
}